
Vol. #, 1–10 ©2021
http://doi.org/will_be_added_later

Finding graphs with exponential
clique-growth using genetic algorithms

M.A. Pizaña1 and I.A. Robles1

1Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Mexico
City, 09340, Mexico

Dedicated to Professor Jayme Szwarcfiter
on the occasion of his 80th birthday

Abstract. The clique graph K(G) is the intersection graph of the
set of all the (maximal) cliques of G. The iterated clique graphs of G
are defined inductively by K0(G) = G and Kn+1(G) = K(Kn(G)).
An open problem is to determine whether there is a graph G, with
exponential clique-growth rate, i.e. such that |Kn(G)| = Θ(tn), for
some t > 1. In this work we report the use of genetic algorithms to
find a candidate for such a graph. The circulant G = Cm(1, 3, 6, 7, 8)

shows an experimental clique-growth rate of |Kn(G)| = Θ
(√

3
n
)
.

Further preliminary theoretical results (beyond the scope of this pa-
per) also suggest that this graph has indeed the desired property, but
the open problem still remains to be settled.

Keywords: genetic algorithms, clique graph, graph theory.

2020 Mathematics Subject Classification: 05C69, 05C76,

68W50.

iarobles271@gmail.com

1

http://doi.org/will_be_added_later

2 M.A. Pizaña and I.A. Robles

1 Introduction

All our graphs are finite, simple and non-empty. The order of a graph
G is denoted by |G|. The cycle graph of n vertices is denoted by Cn and
the octahedral graph is denoted by O3. The strong product of graphs G
and H is denoted by G � H. The circulant graph Cn(a1, a2, . . . , ar) of
n vertices, is the graph defined on Zn where two vertices x, y ∈ Zn are
adjacent if and only if x− y ∈ {±a1,±a2, . . . ,±ar}.

The clique-growth function of a graph G is defined as gG(n) = |Kn(G)|.
There are known examples of graphs were gG(n) has linear growth [7],
polynomial growth [8] and super-exponential growth [10], but so far, no
graph with exponential growth (i.e. gG(n) = Θ(tn), with t > 1) is known.

Since the number of graphs of order n is huge even for small n (e.g.
6 × 1022 for n = 16 [11]) a brute force search is not feasible and it is
necessary to use a different approach that can perform searching in a more
directed way. For our purposes, genetic algorithms yielded satisfactory
results. The method used is summarized in the next section.

2 The genetic algorithm

Genetic algorithms (GAs) are algorithms based on a metaheuristic in-
spired by the mechanisms of biological evolution [6]. GAs have been suc-
cessfully used to solve search and optimization problems. If S is the search
space of an optimization problem, the fitness of a candidate solution c ∈ S,
is a positive real value that measures how optimal c is. The fitness is com-
puted by a fitness function f : S → R+, that is defined according to the
optimization problem. In our case S is the set of graphs of n vertices and
the fitness function f is described in section 3.

A summary of the general steps that are executed sequentially for the
GA used in this work is given below.

1. Initialization: create an initial population with at least 100 random
graphs of n vertices.

Graphs with exponential clique-growth 3

2. Reproduction: randomly choose a pair of graphs G1 and G2 from the
population. The probability of a graph G of being chosen is propor-
tional to its fitness f(G). The fitness is computed with parameters
N = 7 and t = 4 (see Definition 3.1).

3. Crossover : let φ(X) denote a uniformly chosen random element of
the set X. IfM1 andM2 are the n×n adjacency matrices of G1 and
G2, respectively, create a graph G3 with n×n adjacency matrixM3,
that will be the descendant of G1 and G2. The entry (M3)ij in row
i and column j of the adjacency matrix M3, is defined as follows:

(M3)ij =


φ({(M1)ij , (M2)ij}), for j > i,

(M3)ji, for j < i,

0, for i = j.

4. Mutation: for each pair of different vertices x, y ∈ G3 (the descen-
dant), randomly toggle with probability pm = 0.001, its adjacency
relation (i.e. if x and y are adjacent, make them non-adjacent and
vice versa).

5. Predation: randomly replace a graph of the population with the de-
scendant. The probability of a graph G of being replaced is inversely
proportional to its fitness f(G).

6. Verification: if G is the graph with the maximum fitness of the
population, check if f(G) > 0.99 (the maximum fitness is 1), if that’s
the case the algorithm stops, otherwise repeat from step 2.

The code of the GA described above was implemented using the com-
puter algebra system GAP (Groups, Algorithms and Programming [5])
with the package YAGS (Yet Another Graph System [2]). The next sec-
tion describes in more detail the fitness function used for the GA.

4 M.A. Pizaña and I.A. Robles

3 The fitness function

Since we want the GA to search graphs G such that its growth func-
tion satisfies gG(n) = Θ(tn), with t > 1, our general approach to define
the fitness function f(G) is as a measure of how optimal gG(n), can be
approximated by the function:

ye(n) = A ·Bn,

where A and B are constants to be determined. Applying logarithm to
the previous function we obtain:

Ln(ye(n)) = Ln(A ·Bn) = Ln(A) + Ln(B) · n.

By taking y(n) = Ln(ye(n)), a = Ln(A) and b = Ln(B) in the above
equation, we obtain the following lineal equation:

y(n) = a+ bn. (3.1)

By using the function y(n) instead of ye(n), we can apply the least squares
method [4], for computing the constants a and b. Under this approach
the fitness function f can be defined as a measure of how optimally the
linear regression model y(n) approximates Ln(gG(n)) (the precise defini-
tion is stated later in Definition 3.6). However, there are graphs with
super-exponential clique-growth rate, which makes it impossible to com-
pute gG(n) even for n = 4. For instance, in the case of the octahedron O3,
it is well known that gO3(n) =

√
2
gO3

(n−1) [10], and hence

gO3(4) =
√

2

√
2
√
2

√
2
6

≈ 3× 1038.

We can compute this order because of the established recurrence for gO3(n),
but we can not hope to do so in general.

To avoid problems caused by gG(n) growing too fast, we use the follow-
ing iterative algorithm: given t > 1 and gG(0) = |G|, for computing gG(n)

search for the cliques of the graph Kn−1(G), keeping track of the total

Graphs with exponential clique-growth 5

cliques found at any moment, if this number exceeds t · gG(n − 1), stop
the search; otherwise continue until computing gG(n) = |Kn(G)|. This
ensures that we only compute values that satisfy gG(n) ≤ |G| · tn, which
lead us to the following definition.

Definition 3.1 (Logarithmic growth vector of a graph). Given a graph
G, an integer N ≥ 1 and t > 1, let M ≤ N be the maximum integer for
which gG(n) ≤ |G| · tn, for all n ≤ M . The logarithmic growth vector is
defined as follows:

YG,N,t = (Ln(gG(0)), Ln(gG(1)), . . . , Ln(gG(M))) .

Remark 3.2. We will use the notation YG instead of YG,N,t, if its clear in
the context what the values for N and t are.

Remark 3.3. Note that Definition 3.1, implies that |YG| = N + 1 if
gG(n) ≤ |G| · tn, for 0 ≤ n ≤ N and |YG| < N + 1, otherwise.

Using Definition 3.1, we can restate our definition for the fitness func-
tion f as a measure of how optimal is the approximation of the vector YG
using the lineal regression model y(n) = a+ bn in (3.1). To refine this def-
inition, we will make use of the correlation coefficient [3], whose definition
has been adapted for the context of this work and is described below.

Definition 3.4 (Correlation coefficient). Given a graph G, an integer
N ≥ 1 and t > 1, let YG be the logarithmic growth vector of the graph G
and define the vector XG = (0, 1, . . . , |YG|). The correlation coefficient ρG
of the graph G, is defined as follows:

ρG =
Cov(XG, YG)√

V ar(XG) · V ar(YG)
.

Where V ar and Cov are the variance and covariance respectively [3].

Remark 3.5. ρG is undefined, if V ar(XG) = 0 or V ar(YG) = 0.

It is well known that ρ2G has the property that its value tends to 1, the
better a linear regression model approximates a set of points and tends to

6 M.A. Pizaña and I.A. Robles

0, otherwise [3]. In principle ρ2G could be used as a fitness function, but
we need to consider that by Remark 3.3, if |YG| < N + 1, then the graph
G has N + 1− |YG| iterated clique graphs that growth faster than |G| · tn.
Therefore, the fitness function should give a higher value for those plots
for which |YG| = N + 1 and a lower value if |YG| < N + 1. This lead us to
state the fitness function as follows:

Definition 3.6 (Fitness function). Given a graph G, an integer N ≥ 1

and t > 1, let YG = YG,N,t be its logarithmic growth vector (Definition3.1).
Define the vector XG = (0, 1, . . . , |YG|) and let ρG be the correlation coef-
ficient of G (Definition 3.4). The fitness f(G) is defined as follows:

f(G) =

ρ2G ·
(
|YG|
N+1

)
, if V ar(YG) 6= 0 and V ar(XG) 6= 0,

0, otherwise.

Graph G Growth gG(n) Fitness f(G)

C10 Θ(1) 0

C13(1, 3, 4) Θ(n) 0.918

C13(1, 3, 4) � C13(1, 3, 4) Θ(n2) 0.941

O3 Θ

√2

√
2

...
√
2
6

︸ ︷︷ ︸
n times

 0.270

C25(1, 3, 6, 7, 8) Θ
(

3
n
2

)
0.997

(conjectured)

Table 3.1: Sample graphs with their clique-growth rate and fitness.

Table 3.1 shows the computed growth and fitness for some sample
graphs. Note that the circulant graph C25(1, 3, 6, 7, 8), has the highest
fitness.

Graphs with exponential clique-growth 7

4 Results and conjectures

After running several times the genetic algorithm described in Sec-
tion 2, the genetic algorithm found the circulant graphG = C25(1, 3, 6, 7, 8),
with fitness f(G) = 0.997. It is noteworthy that the genetic algorithm
worked with graphs in general and not specifically with circulants. The
growth function of this circulant behaves like this:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
gG(n) 25 50 100 175 325 550 1000 1675 3025 5050 9100 15175 27325

Table 4.1: Growth rate gG(n) for G = C25(1, 3, 6, 7, 8)

As long as it can be computed, this sequence of numbers satisfy the
following recurrence relation:

h(n) =


|G|, for n = 0,

2 · h(0), for n = 1,

3 · h(n− 2) + h(0), for n ≥ 2.

(4.1)

Using triangular covering maps from [9], we know that

|Kn(Cm(1, 3, 6, 7, 8))| = m

25
|Kn(C25(1, 3, 6, 7, 8))|

for all m ≥ 25 and n ≥ 0 and hence, the same recurrence relation holds
(at least for n ≤ 12 as in Table 4.1) for all the circulants Cm(1, 3, 6, 7, 8)

with m ≥ 25.

It is straight forward to prove by induction that the previous recurrence
relation is equivalent to the next one:

Lemma 4.1. The recurrence relation for h(n) in (4.1) can be rewritten

8 M.A. Pizaña and I.A. Robles

as follow:

h(n) =



|G|, for n = 0,

2 · h(0), for n = 1,

9·h(n−1)+2·h(0)
5 , for n even, with n ≥ 2,

5·h(n−1)+h(0)
3 , for n odd, with n ≥ 3.

And using standard methods [1], we can obtain the solution to the
recurrence:

Lemma 4.2. The recurrence relation h(n) has the following solution:

h(n) =


(
3
n
2 +1−1
2

)
h(0), if n is even,(

5·3
n−1
2 −1
2

)
h(0), if n is odd.

In particular, h(n) = Θ(3
n
2).

Besides the empirical recurrence in (4.1) which matches Table 4.1, we
also have preliminary theoretical results (which are beyond this scope of
this paper), that also suggest that h(n) is indeed the same as the clique-
growth function for G = C25(1, 3, 6, 7, 8). All of this motivates us to pro-
pose the following:

Conjecture 4.3 (Exponential growth conjecture). There are graphs with
exponential clique-growth. Moreover, let m ≥ 25 and G = Cm(1, 3, 6, 7, 8).
Then the growth function of G, gG(n), equals the function h(n) defined
by the recurrence relation (4.1). Therefore gG(n) = h(n) = Θ(

√
3
n
) and

Cm(1, 3, 6, 7, 8) grows exponentially.

References

[1] Richard A. Brualdi. Introductory combinatorics. North-Holland New
York, 1977.

Graphs with exponential clique-growth 9

[2] C. Cedillo, R. MacKinney-Romero, M. A. Pizaña, I. A. Robles, and
R. Villarroel-Flores. YAGS - Yet Another Graph System, Version
0.0.5, 2019. http://xamanek.izt.uam.mx/yags/.

[3] Samprit Chatterjee and Ali S. Hadi. Covariance and correlation co-
efficient, pages 25–30. Wiley, 5th edition, 2012.

[4] F.M Dekking, C. Kraaikamp, Lopuhaa H.P, and L.E Meester. The
method of least squares, pages 329–336. Springer, 2005.

[5] The GAP Group. GAP – Groups, Algorithms, and Programming,
Version 4.11.0, 2020.

[6] David E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[7] F. Larrión and V. Neumann-Lara. A family of clique divergent graphs
with linear growth. Graphs and Combinatorics, 13(3):263–266, Sep
1997.

[8] F. Larrión and V. Neumann-Lara. Clique divergent graphs with un-
bounded sequence of diameters. Discrete Mathematics, 197-198:491 –
501, 1999. 16th British Combinatorial Conference.

[9] F. Larrión and V. Neumann-Lara. Locally C6 graphs are clique di-
vergent. Discrete Math., 215(1-3):159–170, 2000.

[10] Víctor Neumann-Lara. On clique-divergent graphs. In Problèmes
combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ.
Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pages
313–315. CNRS, Paris, 1978.

[11] N.J.A. Sloane. Number of graphs on n unlabeled nodes: sequence
A000088 in the On-line Encyclopedia of Integer Sequences. https:
//oeis.org/A000088.

https://oeis.org/A000088
https://oeis.org/A000088

	Introduction
	The genetic algorithm
	The fitness function
	Results and conjectures

