Matemática
 Contemporânea

SOCIEDADE BRASILEIRA DE MATEMÁTICA

Finding graphs with exponential clique-growth using genetic algorithms

M.A. Pizaña ${ }^{1}$ and I.A. Robles ${ }^{1}$
${ }^{1}$ Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Mexico City, 09340, Mexico

Dedicated to Professor Jayme Szwarcfiter on the occasion of his 80th birthday

Abstract

The clique graph $K(G)$ is the intersection graph of the set of all the (maximal) cliques of G. The iterated clique graphs of G are defined inductively by $K^{0}(G)=G$ and $K^{n+1}(G)=K\left(K^{n}(G)\right)$. An open problem is to determine whether there is a graph G, with exponential clique-growth rate, i.e. such that $\left|K^{n}(G)\right|=\Theta\left(t^{n}\right)$, for some $t>1$. In this work we report the use of genetic algorithms to find a candidate for such a graph. The circulant $G=C_{m}(1,3,6,7,8)$ shows an experimental clique-growth rate of $\left|K^{n}(G)\right|=\Theta\left(\sqrt{3}^{n}\right)$. Further preliminary theoretical results (beyond the scope of this paper) also suggest that this graph has indeed the desired property, but the open problem still remains to be settled.

Keywords: genetic algorithms, clique graph, graph theory.
2020 Mathematics Subject Classification: 05C69, 05C76, 68W50.

1 Introduction

All our graphs are finite, simple and non-empty. The order of a graph G is denoted by $|G|$. The cycle graph of n vertices is denoted by C_{n} and the octahedral graph is denoted by O_{3}. The strong product of graphs G and H is denoted by $G \boxtimes H$. The circulant graph $C_{n}\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ of n vertices, is the graph defined on Z_{n} where two vertices $x, y \in Z_{n}$ are adjacent if and only if $x-y \in\left\{ \pm a_{1}, \pm a_{2}, \ldots, \pm a_{r}\right\}$.

The clique-growth function of a graph G is defined as $g_{G}(n)=\left|K^{n}(G)\right|$. There are known examples of graphs were $g_{G}(n)$ has linear growth [7], polynomial growth [8] and super-exponential growth [10], but so far, no graph with exponential growth (i.e. $g_{G}(n)=\Theta\left(t^{n}\right)$, with $t>1$) is known.

Since the number of graphs of order n is huge even for small n (e.g. 6×10^{22} for $\left.n=16[11]\right)$ a brute force search is not feasible and it is necessary to use a different approach that can perform searching in a more directed way. For our purposes, genetic algorithms yielded satisfactory results. The method used is summarized in the next section.

2 The genetic algorithm

Genetic algorithms (GAs) are algorithms based on a metaheuristic inspired by the mechanisms of biological evolution [6]. GAs have been successfully used to solve search and optimization problems. If S is the search space of an optimization problem, the fitness of a candidate solution $c \in S$, is a positive real value that measures how optimal c is. The fitness is computed by a fitness function $f: S \rightarrow R^{+}$, that is defined according to the optimization problem. In our case S is the set of graphs of n vertices and the fitness function f is described in section 3 .

A summary of the general steps that are executed sequentially for the GA used in this work is given below.

1. Initialization: create an initial population with at least 100 random graphs of n vertices.
2. Reproduction: randomly choose a pair of graphs G_{1} and G_{2} from the population. The probability of a graph G of being chosen is proportional to its fitness $f(G)$. The fitness is computed with parameters $N=7$ and $t=4$ (see Definition 3.1).
3. Crossover: let $\phi(X)$ denote a uniformly chosen random element of the set X. If M_{1} and M_{2} are the $n \times n$ adjacency matrices of G_{1} and G_{2}, respectively, create a graph G_{3} with $n \times n$ adjacency matrix M_{3}, that will be the descendant of G_{1} and G_{2}. The entry $\left(M_{3}\right)_{i j}$ in row i and column j of the adjacency matrix M_{3}, is defined as follows:

$$
\left(M_{3}\right)_{i j}= \begin{cases}\phi\left(\left\{\left(M_{1}\right)_{i j},\left(M_{2}\right)_{i j}\right\}\right), & \text { for } j>i \\ \left(M_{3}\right)_{j i}, & \text { for } j<i \\ 0, & \text { for } i=j\end{cases}
$$

4. Mutation: for each pair of different vertices $x, y \in G_{3}$ (the descendant), randomly toggle with probability $p_{m}=0.001$, its adjacency relation (i.e. if x and y are adjacent, make them non-adjacent and vice versa).
5. Predation: randomly replace a graph of the population with the descendant. The probability of a graph G of being replaced is inversely proportional to its fitness $f(G)$.
6. Verification: if G is the graph with the maximum fitness of the population, check if $f(G)>0.99$ (the maximum fitness is 1), if that's the case the algorithm stops, otherwise repeat from step 2.

The code of the GA described above was implemented using the computer algebra system GAP (Groups, Algorithms and Programming [5]) with the package YAGS (Yet Another Graph System [2]). The next section describes in more detail the fitness function used for the GA.

3 The fitness function

Since we want the GA to search graphs G such that its growth function satisfies $g_{G}(n)=\Theta\left(t^{n}\right)$, with $t>1$, our general approach to define the fitness function $f(G)$ is as a measure of how optimal $g_{G}(n)$, can be approximated by the function:

$$
y_{e}(n)=A \cdot B^{n}
$$

where A and B are constants to be determined. Applying logarithm to the previous function we obtain:

$$
\operatorname{Ln}\left(y_{e}(n)\right)=\operatorname{Ln}\left(A \cdot B^{n}\right)=\operatorname{Ln}(A)+\operatorname{Ln}(B) \cdot n .
$$

By taking $y(n)=\operatorname{Ln}\left(y_{e}(n)\right), a=\operatorname{Ln}(A)$ and $b=\operatorname{Ln}(B)$ in the above equation, we obtain the following lineal equation:

$$
\begin{equation*}
y(n)=a+b n \tag{3.1}
\end{equation*}
$$

By using the function $y(n)$ instead of $y_{e}(n)$, we can apply the least squares method [4], for computing the constants a and b. Under this approach the fitness function f can be defined as a measure of how optimally the linear regression model $y(n)$ approximates $\operatorname{Ln}\left(g_{G}(n)\right)$ (the precise definition is stated later in Definition 3.6). However, there are graphs with super-exponential clique-growth rate, which makes it impossible to compute $g_{G}(n)$ even for $n=4$. For instance, in the case of the octahedron O_{3}, it is well known that $g_{O_{3}}(n)=\sqrt{2}^{g_{O_{3}}(n-1)}$ [10], and hence

$$
g_{O_{3}}(4)=\sqrt{2}^{\sqrt{2}^{\sqrt{2} \sqrt{2}}{ }^{6}} \approx 3 \times 10^{38}
$$

We can compute this order because of the established recurrence for $g_{O_{3}}(n)$, but we can not hope to do so in general.

To avoid problems caused by $g_{G}(n)$ growing too fast, we use the following iterative algorithm: given $t>1$ and $g_{G}(0)=|G|$, for computing $g_{G}(n)$ search for the cliques of the graph $K^{n-1}(G)$, keeping track of the total
cliques found at any moment, if this number exceeds $t \cdot g_{G}(n-1)$, stop the search; otherwise continue until computing $g_{G}(n)=\left|K^{n}(G)\right|$. This ensures that we only compute values that satisfy $g_{G}(n) \leq|G| \cdot t^{n}$, which lead us to the following definition.

Definition 3.1 (Logarithmic growth vector of a graph). Given a graph G, an integer $N \geq 1$ and $t>1$, let $M \leq N$ be the maximum integer for which $g_{G}(n) \leq|G| \cdot t^{n}$, for all $n \leq M$. The logarithmic growth vector is defined as follows:

$$
Y_{G, N, t}=\left(\operatorname{Ln}\left(g_{G}(0)\right), \operatorname{Ln}\left(g_{G}(1)\right), \ldots, \operatorname{Ln}\left(g_{G}(M)\right)\right) .
$$

Remark 3.2. We will use the notation Y_{G} instead of $Y_{G, N, t}$, if its clear in the context what the values for N and t are.

Remark 3.3. Note that Definition 3.1, implies that $\left|Y_{G}\right|=N+1$ if $g_{G}(n) \leq|G| \cdot t^{n}$, for $0 \leq n \leq N$ and $\left|Y_{G}\right|<N+1$, otherwise.

Using Definition 3.1, we can restate our definition for the fitness function f as a measure of how optimal is the approximation of the vector Y_{G} using the lineal regression model $y(n)=a+b n$ in (3.1). To refine this definition, we will make use of the correlation coefficient [3], whose definition has been adapted for the context of this work and is described below.

Definition 3.4 (Correlation coefficient). Given a graph G, an integer $N \geq 1$ and $t>1$, let Y_{G} be the logarithmic growth vector of the graph G and define the vector $X_{G}=\left(0,1, \ldots,\left|Y_{G}\right|\right)$. The correlation coefficient ρ_{G} of the graph G, is defined as follows:

$$
\rho_{G}=\frac{\operatorname{Cov}\left(X_{G}, Y_{G}\right)}{\sqrt{\operatorname{Var}\left(X_{G}\right) \cdot \operatorname{Var}\left(Y_{G}\right)}} .
$$

Where Var and Cov are the variance and covariance respectively [3].
Remark 3.5. ρ_{G} is undefined, if $\operatorname{Var}\left(X_{G}\right)=0$ or $\operatorname{Var}\left(Y_{G}\right)=0$.
It is well known that ρ_{G}^{2} has the property that its value tends to 1 , the better a linear regression model approximates a set of points and tends to

0 , otherwise [3]. In principle ρ_{G}^{2} could be used as a fitness function, but we need to consider that by Remark 3.3, if $\left|Y_{G}\right|<N+1$, then the graph G has $N+1-\left|Y_{G}\right|$ iterated clique graphs that growth faster than $|G| \cdot t^{n}$. Therefore, the fitness function should give a higher value for those plots for which $\left|Y_{G}\right|=N+1$ and a lower value if $\left|Y_{G}\right|<N+1$. This lead us to state the fitness function as follows:

Definition 3.6 (Fitness function). Given a graph G, an integer $N \geq 1$ and $t>1$, let $Y_{G}=Y_{G, N, t}$ be its logarithmic growth vector (Definition3.1). Define the vector $X_{G}=\left(0,1, \ldots,\left|Y_{G}\right|\right)$ and let ρ_{G} be the correlation coefficient of G (Definition 3.4). The fitness $f(G)$ is defined as follows:

$$
f(G)= \begin{cases}\rho_{G}^{2} \cdot\left(\frac{\left|Y_{G}\right|}{N+1}\right), & \text { if } \operatorname{Var}\left(Y_{G}\right) \neq 0 \text { and } \operatorname{Var}\left(X_{G}\right) \neq 0, \\ 0, & \text { otherwise }\end{cases}
$$

Graph G	Growth $g_{G}(n)$	Fitness $f(G)$
C_{10}	$\Theta(1)$	0
$C_{13}(1,3,4)$	$\Theta(n)$	0.918
$C_{13}(1,3,4) \boxtimes C_{13}(1,3,4)$	$\Theta\left(n^{2}\right)$	0.941
O_{3}	$\Theta(\underbrace{\sqrt{2}^{\sqrt{2}} \cdot \cdot^{\sqrt{2}^{6}}}_{n \text { times }})$	0.270
$C_{25}(1,3,6,7,8)$	$\Theta\left(3^{\frac{n}{2}}\right)$ (conjectured)	0.997

Table 3.1: Sample graphs with their clique-growth rate and fitness.
Table 3.1 shows the computed growth and fitness for some sample graphs. Note that the circulant graph $C_{25}(1,3,6,7,8)$, has the highest fitness.

4 Results and conjectures

After running several times the genetic algorithm described in Section 2, the genetic algorithm found the circulant graph $G=C_{25}(1,3,6,7,8)$, with fitness $f(G)=0.997$. It is noteworthy that the genetic algorithm worked with graphs in general and not specifically with circulants. The growth function of this circulant behaves like this:

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$g_{G}(n)$	25	50	100	175	325	550	1000	1675	3025	5050	9100	15175	27325

Table 4.1: Growth rate $g_{G}(n)$ for $G=C_{25}(1,3,6,7,8)$

As long as it can be computed, this sequence of numbers satisfy the following recurrence relation:

$$
h(n)= \begin{cases}|G|, & \text { for } n=0, \tag{4.1}\\ 2 \cdot h(0), & \text { for } n=1, \\ 3 \cdot h(n-2)+h(0), & \text { for } n \geq 2\end{cases}
$$

Using triangular covering maps from [9], we know that

$$
\left|K^{n}\left(C_{m}(1,3,6,7,8)\right)\right|=\frac{m}{25}\left|K^{n}\left(C_{25}(1,3,6,7,8)\right)\right|
$$

for all $m \geq 25$ and $n \geq 0$ and hence, the same recurrence relation holds (at least for $n \leq 12$ as in Table 4.1) for all the circulants $\mathrm{C}_{m}(1,3,6,7,8)$ with $m \geq 25$.

It is straight forward to prove by induction that the previous recurrence relation is equivalent to the next one:

Lemma 4.1. The recurrence relation for $h(n)$ in (4.1) can be rewritten
as follow:

$$
h(n)= \begin{cases}|G|, & \text { for } n=0, \\ 2 \cdot h(0), & \text { for } n=1, \\ \frac{9 \cdot h(n-1)+2 \cdot h(0)}{5}, & \text { for } n \text { even, with } n \geq 2 \\ \frac{5 \cdot h(n-1)+h(0)}{3}, & \text { for } n \text { odd, with } n \geq 3\end{cases}
$$

And using standard methods [1], we can obtain the solution to the recurrence:

Lemma 4.2. The recurrence relation $h(n)$ has the following solution:

$$
h(n)= \begin{cases}\left(\frac{3 \frac{n}{2}+1}{2}-1\right. \\ 2(0), & \text { if } n \text { is even }, \\ \left(\frac{5 \cdot 3 \frac{n-1}{2}-1}{2}\right) h(0), & \text { if } n \text { is odd. }\end{cases}
$$

In particular, $h(n)=\Theta\left(3^{\frac{n}{2}}\right)$.
Besides the empirical recurrence in (4.1) which matches Table 4.1, we also have preliminary theoretical results (which are beyond this scope of this paper), that also suggest that $h(n)$ is indeed the same as the cliquegrowth function for $G=C_{25}(1,3,6,7,8)$. All of this motivates us to propose the following:

Conjecture 4.3 (Exponential growth conjecture). There are graphs with exponential clique-growth. Moreover, let $m \geq 25$ and $G=C_{m}(1,3,6,7,8)$. Then the growth function of $G, g_{G}(n)$, equals the function $h(n)$ defined by the recurrence relation (4.1). Therefore $g_{G}(n)=h(n)=\Theta\left(\sqrt{3}^{n}\right)$ and $C_{m}(1,3,6,7,8)$ grows exponentially.

References

[1] Richard A. Brualdi. Introductory combinatorics. North-Holland New York, 1977.
[2] C. Cedillo, R. MacKinney-Romero, M. A. Pizaña, I. A. Robles, and R. Villarroel-Flores. YAGS - Yet Another Graph System, Version 0.0.5, 2019. http://xamanek.izt.uam.mx/yags/.
[3] Samprit Chatterjee and Ali S. Hadi. Covariance and correlation coefficient, pages 25-30. Wiley, 5th edition, 2012.
[4] F.M Dekking, C. Kraaikamp, Lopuhaa H.P, and L.E Meester. The method of least squares, pages 329-336. Springer, 2005.
[5] The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.11.0, 2020.
[6] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, 1989.
[7] F. Larrión and V. Neumann-Lara. A family of clique divergent graphs with linear growth. Graphs and Combinatorics, 13(3):263-266, Sep 1997.
[8] F. Larrión and V. Neumann-Lara. Clique divergent graphs with unbounded sequence of diameters. Discrete Mathematics, 197-198:491 501, 1999. 16th British Combinatorial Conference.
[9] F. Larrión and V. Neumann-Lara. Locally C_{6} graphs are clique divergent. Discrete Math., 215(1-3):159-170, 2000.
[10] Víctor Neumann-Lara. On clique-divergent graphs. In Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pages 313-315. CNRS, Paris, 1978.
[11] N.J.A. Sloane. Number of graphs on n unlabeled nodes: sequence A000088 in the On-line Encyclopedia of Integer Sequences. https: / /oeis.org/A000088.

