
T
hi
s
is

an
au

th
or

ve
rs
io
n
of

a
pa

pe
r
pu

bl
is
he
d
in
:
J
G
ra
ph

T
he
or
y
96

(2
02
1)

pp
41
4–
43
7

ht
tp
s:
//
do

i.o
rg
/1
0.
10
02
/j
gt
.2
26
22

CLIQUE-CONVERGENCE IS UNDECIDABLE
FOR AUTOMATIC GRAPHS

C. CEDILLO1,3,4,5,6 AND M.A. PIZAÑA2,3,6

Abstract. The clique operator transforms a graph G into its clique graph
K(G), which is the intersection graph of all the (maximal) cliques of G. Iter-
ated clique graphs are then defined by: Kn

(G) = K(Kn−1
(G)), K0

(G) = G.
If there are some n ≠ m such that Kn

(G) ≅ Km
(G) then we say that G is

clique-convergent. The clique graph operator and iterated clique graphs have
been studied extensively, but no characterization for clique-convergence has
been found so far.

Automatic graphs are (not necessarily finite) graphs whose vertices and
edges can be recognized by finite automata. Automatic graphs (and auto-
matic structures) have strong decidability properties inherited from the finite
automata defining them.

Here we prove that clique-convergence is algorithmically undecidable for the
class of automatic graphs. Moreover, the problem remains undecidable, if we
reduce to the class that contain only quasi clique-Helly and bounded degree
graphs. As a consequence, it follows that clique-convergence for automatic
graphs is not first-order expressible.

1. Introduction

Let G be the class of all graphs. In graph dynamics [19], we have a graph operator
Φ ∶ G → G and we are interested in the properties of the resulting discrete dynamic
system. This setting is useful in certain approaches to loop quantum gravity [20–22]
where the quantum spacetime foam is to be obtained as an emergent property from
the (hypothetical) underlying discrete spacetime.

Given a graph operator Φ, we can define the corresponding iterated operators
by Φ0

(G) = G and Φn(G) = Φ(Φn−1
(G)). One of the central topics of study in

graph dynamics is that of Φ-convergence: A graph G is said to be Φ-convergent,
if Φn(G) ≅ Φm(G), for some n < m; otherwise, G is Φ-divergent. Φ-convergence
have been fully characterized for many graphs operators, ranging from the classic
characterization of convergence for iterated line graphs and iterated path graphs
[18] to the more recent characterization for iterated biclique graphs [7].

The clique operator K, however, is widely considered one of the most complex
ones [19] and a characterization of K-convergence (or clique-convergence) has re-
sisted all attempts during the 48 years since the notion of iterated clique graphs was

1Email: mc.cedilloc@gmail.com
2Email: mpizana@gmail.com
3Universidad Autónoma Metropolitana - Iztapalapa, Mexico City, Mexico.
4Centro Universitario UAEM Nezahualcóyotl, Nezahualcoyotl City, Mexico.
5Partially supported by CONACYT, scholarship 397900.
6Partially supported by SEP-CONACYT, grant A1-S-45528.
Key words and phrases. graph theory, graph dynamics, clique graphs, decidability, automatic

structures.
1



2 C. CEDILLO AND M.A. PIZAÑA

introduced in [8]. No substantial progress has been made either on showing that
clique-convergence might be algorithmically undecidable. The algorithmic undecid-
ability of clique-convergence has been suggested in several places starting in [17],
including [19]; the first explicit statement on the issue appeared in [15] and the first
explicit statement in a formal publication appeared in [13]. The main objective of
this research program is to prove that the problem of deciding clique-convergence
is undecidable for the class of finite simple graphs, i.e. that there is no algorithm
for deciding clique-convergence. This problem, however, still remains open.

Here we present the first undecidability result for clique-convergence by relaxing
the condition that the class under study is only the class of finite simple graphs.
Infinite graphs have been considered within clique graph theory in several papers
including [4, 14]. Here we wanted to relax the finiteness condition as little as possi-
ble and hence we considered only (possibly infinite but) finitely presentable, quasi
clique-Helly, locally finite graphs of bounded degree and with at most one dom-
inated vertex. Indeed, striving for the most stringent conditions, we decided to
consider only automatic graphs which are graphs whose vertices and edges can be
recognized by deterministic finite automata (the formal definitions are in the next
section). Automata are among the simplest models of computation, so automatic
graphs have not only algorithms for determining vertices and edges, but also these
algorithms are of the most simple form. Automatic graphs and automatic structures
[1, 2, 11, 12, 23] have very strong decidability properties inherited from automata
theory. Indeed, the first-order theory of any automatic structure is decidable (see
Theorem 2.3), but also first-order theories expanded with certain generalized quan-
tifiers are still decidable [23] and even some fragments of second-order theories are
decidable [12]. Moreover clique-Helly graphs without dominated vertices are all
known to be clique-convergent even in the infinite case (see Theorem 2.7) hence
our undecidability result for quasi clique-Helly graphs (which become clique-Helly
after removing only one vertex) with at most one dominated vertex is somewhat
unexpected.

Let AG be the class of automatic graphs, TM the class of Turing machines and
let TMW be the class of ordered pairs (M,w), where w is an input string for
M ∈ TM. We shall prove the following result:

Theorem 1.1. Clique-convergence is algorithmically undecidable for the class of
automatic graphs. Moreover, the problem remains undecidable, if we reduce to the
class that contains only quasi clique-Helly and bounded degree graphs with at most
one dominated vertex.

The proof is obtained by reduction from the halting problem (well known to be
undecidable), indeed the previous theorem follows immediately from the next one:

Theorem 1.2. There is a computable function λ ∶ TMW → AG such that for each
(M,w) ∈ TMW, M halts on input w if and only if λ(M,w) is clique-convergent.
Hence, clique-convergence is undecidable for any class containing AG0 ∶= λ(TMW).
Furthermore, λ can be chosen such that the graphs in AG0 are quasi clique-Helly,
of bounded degree and with at most one dominated vertex.

Section 4 is devoted to the proof of Theorem 1.2. We considered it pertinent to
present an informal overview of the proof in Section 3. All preliminary results,
definitions and terminology are in Section 2. In Section 5, we explore several
consequences of Theorem 1.2.



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 3

2. Preliminaries

This paper is mostly self-contained but it always helps to have some previous
experience with the topics at hand: language theory (automata and Turing ma-
chines), undecidability, automatic presentations of structures, clique graph theory
and algorithms. Most crucially, we will not explain why some constructions are
effective (i.e. that the construction can be realized algorithmically) since this is
usually obvious for those who have a previous background on algorithms, but it
would require an enormous amount of space to explain this for those who do not.

We refer the reader to the literature for standard terminology and results on
language theory and undecidability [9], automatic presentations of structures [23],
graph theory [3] and clique graph theory [24]. For the reader’s convenience, we
overview here the required terminology and results.

2.1. Language theory. An alphabet Σ is a finite set of symbols. A string w over
Σ is a finite sequence of symbols of Σ. The length of a string w is denoted by ∣w∣.
The empty string is the only string of length 0 and it is denoted by ε. We represent
the concatenation of two strings by simple juxtaposition vw. Note that, for every
string w, we have εw = wε = w. The set of all strings over Σ is denoted by Σ∗. A
language L over Σ is any subset L ⊆ Σ∗. We shall use the special symbol ◇ ∉ Σ
as right-padding for strings. The extended alphabet Σ ∪ {◇} is denoted by Σ◇. If
w is a string over Σ, we denote its i-th symbol (for 1 ≤ i ≤ ∣w∣) by w[i]. We also
define w[i] = ◇ for all i > ∣w∣. For any set A, the Cartesian product of n copies of
A is denoted by An. Given a sequence of strings w = (w1,w2, . . . ,wn) over Σ, its
convolution u = ⊗w = ⊗(w1,w2, . . . ,wn) is the string of length ∣u∣ = max ∣wi∣ over the
alphabet (Σ◇)

n whose i-th symbol is u[i] = (w1[i],w2[i], . . . ,wn[i]). For example
⊗(1010,01) = (1,0)(0,1)(1,◇)(0,◇) is a string of length 4 over the alphabet:

(Σ◇)
2
= {(0,0), (0,1), (0,◇), (1,0), (1,1), (1,◇), (◇,0), (◇,1), (◇,◇)}.

Using column vectors instead of tuples, may better convey the underlying idea
of the convolution (and right-padding):

⊗(
1010

01
) = (

1

0
)(

0

1
)(

1

◇

)(
0

◇

).

We shall use column vectors and tuples indistinctly, but we emphasize that the
difference is only notational. Some standard operations on languages are: union
denoted as L1 + L2, intersection L1 ∩ L2, complement L = Σ∗

− L, concatenation
L1 ⋅ L2 ∶= {vw ∶ v ∈ L1,w ∈ L2}, powers L(0) ∶= {ε}, L(n+1)

∶= L ⋅ L(n) (we use
parenthesis in the exponents to avoid confusion with the Cartesian product powers,
which we shall use much more often) and Kleene closure L∗ ∶= ∪∞n=0L

(n).

2.2. Automata theory. A deterministic finite automaton (DFA) is a tuple M =

(Q,Σ, δ, q0, F ) where Q is the finite set of states, Σ is the alphabet, δ ∶ Q ×Σ → Q
is the transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final
states.

Automata are usually represented by diagrams like those in Figure 1. For in-
stance, in the diagram on the left of Figure 1, Q = {q0, q1, q2, q3}, Σ = {0,1} and
the initial state q0 is indicated by an arrow not coming from any other state. The
final states F = {q1, q2} are indicated by a double circle in the state. The transi-
tion function δ is represented by the arrows in the diagram: we put an arrow from
state q to state p labeled with symbol a ∈ Σ whenever δ(q, a) = p. Let us call this



4 C. CEDILLO AND M.A. PIZAÑA

q0 q1

q2 q3

1

0 0

1

0

1
1

0

q0 q1
(
0
1
)

(
1
0
) (

0
0
), (11)

Figure 1. Automata MN (left) and M+1 (right).

automaton MN. Then, given a string w, we start at q0 and follow the arrows in the
diagram which are labeled as the symbols in string w, in left-to-right order. Thus
the string 00101 produces the walk q0 → q2 → q3 → q1 → q3 → q1. Since this last
state q1 ∈ F is a final state, we say that the automaton accepts the string 00101,
otherwise, the string is rejected. The language recognized by an automaton L(M)

is the set of all strings accepted by the automaton. Any language recognized by a
DFA, is said to be a regular language. It is not difficult to verify that N ∶= L(MN)

is exactly the set of all non-empty strings ending in 1 plus the string 0, and hence
N is regular. We shall use the strings in N as big-endian binary representations of
the natural numbers N, in this representation we start by the least significant bit
on the left and end with the most significant bit on the right (so that 011 is the
big-endian binary representation of 6). This big-endian representation is standard
in automata theory but contrary to our everyday usage.

A dead state of an automaton, is a non-final state q such that there is no arrow
leaving that state, that is, such that q /∈ F and δ(q, a) = q for all a ∈ Σ. It is a
standard convention not to draw the dead state of automata as in the diagram on
the right of Figure 1: There, an extra (implicit) dead state q2 must exist which
is the destination of all arrows not present in the drawing (like δ(q0, (

0
0
)) = q2 and

δ(q1, (
0
1
)) = q2).

Whenever ○ is a binary (resp. unary) operation on languages, we say that regular
languages are effectively closed under ○ if whenever L1 and L2 are regular languages
L1○L2 (resp. ○(L1)) is also a regular language and the automaton for L1○L2 (resp.
○(L1)) can be obtained algorithmically from the automata for L1 and L2. Then we
have:

Theorem 2.1. [9] Any finite language is regular. Regular languages are effectively
closed under: complement, union, intersection, concatenation and Kleene closure.

For auxiliary purposes, we shall also consider N̂, which contains N but also allows
the strings to end in 0, formally N̂ = N + N ⋅ {0} (recall that the union is denoted by
“+” in language theory). It follows by Theorem 2.1, that N̂ is also regular. Note
that each natural number has two representations in N̂ (7 is represented both, as
111 and as 1110). Although N is a set of numbers and N̂ is a set of strings, we shall
treat the elements of N̂ as numbers too, so we can use expressions like “t+ a > t+ b”
with t ∈ N̂ and a, b ∈ N (for instance).

Regular languages also have very strong decidability properties.



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 5

Theorem 2.2. [9] Given automata M1 and M2 the following decision problems are
algorithmically decidable: Is L(M1) empty? Is L(M1) finite (infinite)? Is L(M1)

equal to L(M2)? Also, given an automaton M we can algorithmically compute the
minimal automaton M ′ such that L(M) = L(M ′

).

Moreover, given an automaton M we can effectively find a string w ∈ L(M) (if
it exists). Also, given M and w, we can effectively find the next (in lexicographic
order) string w′

∈ L(M) (if it exists).

2.3. Automatic presentations of structures. A relational structure is a tuple
A = (A,R1, . . . ,Rn), where A is a set, called its domain, and Ri are relations on A,
of some arity ri ∈ N, that is, Ri ⊆ Ari . When the domain is a set of strings of Σ∗,
we can define the convolution of a relation R ⊆ (Σ∗

)
r as the set ⊗R = {⊗w ∶ w ∈ R},

that is, ⊗R ⊆ ((Σ◇)
r
)
∗ is the set of convolutions of the tuples in R. Observe

that ⊗R is a language over alphabet (Σ◇)
r and that it is regular whenever there

is an automaton recognizing it. We will also say that R is an automatic relation
whenever ⊗R is a regular language and that R is recognized by an automaton M if
⊗R = L(M). We identify elements x of a set R ⊆ A with 1-tuples (x) ∈ R1, hence
a set R = R1

⊆ A1 is also a unary relation and then, in this case, ⊗(R) = R. Then
R is a regular language if and only if it is an automatic relation, in particular, we
may use either relational notation or set notation: R(x)⇔ x ∈ R.

As an example, consider the successor relation R+1 ∶= {(t, t + 1) ∈ N̂2, ∣t∣ = ∣t + 1∣},
that is, the set of all the pairs of strings (t, t + 1) ∈ N̂2, where t and t + 1 have the
same length. Recall that the strings in N̂ are big-endian, then all the strings in
⊗R+1 are of the form:

⊗(
t

t + 1
) = ⊗(

11⋯10a1a2⋯as
00⋯01a1a2⋯as

) = (
1

0
)(

1

0
)⋯(

1

0
)(

0

1
)(
a1

a1
)(
a2

a2
)⋯(

as
as

)

with ai ∈ {0,1}. We emphasize that the initial prefix (
1
0
)⋯(

1
0
) may be empty, and

also the final suffix (
a1
a1
)⋯(

as
as
) may be empty. But all the strings in ⊗R+1 contain

the symbol (0
1
) at some point.

Automatic relations have very strong decidability and closure properties, which
are inherited from automata theory: Every finite relation is automatic, also auto-
matic relations are closed under projection, instantiation, cylindrification, permu-
tation of coordinates and many others [23]. In particular, automatic relations are
effectively closed under logical constructs:

Theorem 2.3 (Thm. 4.4 in [11]). If R1, R2 are automatic relations, then the
following are also automatic relations: R1∨R2, R1∧R2, ¬R1, ∃x(R1) and ∀x(R1).
Moreover, the automata for these relations can be effectively constructed from the
automata for R1 and R2.

When R1 is an unary relation, both ∃x(R1) and ∀x(R1) are 0-ary relations
which, strictly speaking, can not be automatic for technical reasons, but in [11] they
use unary relations (R = A for the true relation and R = ∅ for the false relation)
to represent these 0-ary relations. We also point out that, for any automatic unary
relation R1 an example of a string w satisfying R1(w) (and thus a certificate for
∃x(R1)) can be effectively found (if it exists). Moreover, given R1 and w we can
effectively find the next (in lexicographic order) string w′ satisfying R1(w

′
) (if it

exists). Observe that ⊗R is always a unary relation.



6 C. CEDILLO AND M.A. PIZAÑA

Note that N̂2 is automatic by Theorem 2.3 since N̂2
(w1,w2) = (w1 ∈ N̂ ∧w2 ∈ N̂).

Also, R+1 is an automatic relation since ⊗R+1 = L(M+1)∩⊗N̂
2 is a regular language

(here M+1 is the automaton on the right of Figure 1). Note that (110,001) ∈ R+1

but (11,001) /∈ R+1, since we defined R+1 to require the strings to be of the same
length.

Given a relational structure A = (A,R1, . . . ,Rn), let L ⊆ Σ∗ be a language
representing the elements of A. A mapping µ ∶ L → A specifies that an element
a ∈ A is represented by some string w ∈ L, whenever µ(w) = a. Also, the relations
Ri ⊆ A

ri will be represented by the corresponding relations µ−1
(Ri) ⊆ L

ri , defined
by µ−1

(Ri) = {(w1,w2, . . . ,wri) ∈ L
ri
∶ (µ(w1), µ(w2), . . . , µ(wri)) ∈ Ri}. Formally,

an automatic presentation of a relational structureA = (A,R1, . . . ,Rn) is a mapping
µ and a tuple of automata (MA,M1, . . . ,Mn) such that

(1) µ ∶ L(MA)→ A is bijective.
(2) L(Mi) = ⊗µ

−1
(Ri) ⊆ ((Σ◇)

ri
)
∗.

Usually, µ is not required to be injective and the identity relation in A is in-
cluded among the relations Ri and hence, as part of the automatic presentation,
an automaton M= is given, which is able to recognize two different representations
w1,w2 of the same element a ∈ A, that is: L(M=) = {⊗(w1,w2) ∶ µ(w1) = µ(w2)}.
Here, we opt to use the equivalent approach in which µ is injective and hence M=
is a very simple automaton (L(M=) = {⊗(w,w) ∶ w ∈ L}) and the elements of A can
be identified with their representations in L = L(MA).

Automatic presentations, have very strong decidability properties; the following
is a classic result:

Theorem 2.4 (Cor. 4.2 in [11]). The first-order theory of any automatic structure
is algorithmically decidable.

Moreover, the previous theorem has been generalized beyond first-order logic, to
include several generalized quantifiers, including ∃

∞, ∃(k,m) and ∃
k−ram [23]: The

first quantifier specifies an infinite number of elements in the domain satisfying
the proposition, while the second quantifier specifies a number of elements that is
congruent with k modulo m; the third, ∃k−ram, is the k-Ramsey quantifier, whose
definition is beyond the scope of this paper. The previous theorem have even been
extended to some fragments of second-order logic called FSO [12].

An automatic graph is a pair of automata G = (MV ,ME), where the alphabet
of MV is Σ and the alphabet of ME is (Σ◇)

2. The vertices and edges of G are then
given by V (G) = L(MV ) and ⊗E(G) = L(ME). Note that an automatic graph is
then an automatic presentation of the graph (V (G),E(G)) with µ = 1V (G), but we
prefer to consider an automatic graph to be a graph on its own right. We denote
by AG the class of all automatic graphs.

2.4. Turing machines. Informally (see Figure 2), a Turing machine is a finite
control with a read/write head, which operates on a one-way infinite tape. The
finite control is, at any given time, in some specific state q among a finite number
of possibilities q ∈ Q. Depending on this state q and the symbol a which is directly
under the read/write head (the symbols on the tape belong to the tape alphabet Γ),
the finite control decides which is the new state p for the finite control, which new
symbol b is to be written at the current head position and whether the read/write
head moves to the left (←) or to the right (→). An one-step Turing transition is



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 7

Finite
control

q

0 1 a 1 ␣ ␣ ⋯

z

Finite
control

p

0 1 b 1 ␣ ␣ ⋯

Figure 2. Turing machines and transitions.

denoted by the symbol z and it is illustrated in Figure 2, in the case where the
head movement is to the right.

The decisions of the finite control are encoded in a (partial) transition function
δ ∶ Q×Γ→ Q×Γ×{←,→}. This function is partial since it is allowed to be undefined
for some elements (q, a) of its domain Q×Γ. A Turing machine always starts at an
initial state q0, with some input string w written on the leftmost part of its tape
(the rest of the tape is filled with the blank symbol “␣”) and with the read/write
head at the leftmost cell of the tape. Then the Turing machine proceeds as dictated
by δ until either it finds a pair (q, a) where δ is undefined or the read/write head
falls off the left boundary of the tape; when any of these two conditions happens,
the Turing machine halts. The halting problem consist in determining whether a
given Turing machineM eventually halts on a given input string w. It is well known
that the halting problem is algorithmically undecidable.

Formally a Turing machine, is a tupleM = (Q,Σ,Γ, δ, q0,␣, F ) where Q is the set
of states, Σ is the input alphabet (the alphabet used to encode the input string w),
Γ is the tape alphabet (the set of all symbols that can appear on the tape, Σ ⊆ Γ),
δ ∶ Q × Γ → Q × Γ × {←,→} is the (partial) transition function, q0 ∈ Q is the initial
state, ␣ ∈ Γ ∖Σ is the blank symbol and F ⊆ Q is the set of final states.

Figure 2 illustrates two “snapshots” of a Turing machine at two consecutive
moments in time. These “snapshots” are called configurations or instantaneous de-
scriptions of the Turing machine. It is standard practice to represent instantaneous
descriptions by strings s = uqv ∈ Γ∗QΓ∗ where q is the state of the machine, u is
the content of the tape to the left of the head, and v is the content of the tape
starting at the head and to the right of it (not considering the infinite tail of blank
symbols). For instance, the two configurations in Figure 2 are represented by the
strings 01qa1 and 01bp1 respectively. The transition relation among configurations
is written as sz s′. That is, we write sz s′ whenever the configuration s transits
in one step to the configuration s′ according to the transition function δ of M . In
our example, we can write 01qa1 z 01bp1 assuming that δ(q, a) = (p, b,→). The
transition relation is automatic:

Theorem 2.5 (Prop. 2.6 in [11], Lemma 5.12 in [2]). For every Turing machine
the configuration-transition relation uqv z u′q′v′ is automatic.

Here we shall use timestamped configurations d = ts = tuqv ∈ N̂Γ∗QΓ∗, thus t is
a binary string representing the elapsed time of a given computation. Hence the
starting timestamped configuration of a Turing machine with the string w on its
tape is 0q0w. We shall write ts z t′s′ (or d z d′) whenever s z s′ and t′ = t + 1; in
this case, we say that d′ is a successor of d and that d is a predecessor of d′. Also, for
n ≥ 0, we shall write d

n
z d1 whenever d transits to d1 in n steps: dz ⋯z d1; when



8 C. CEDILLO AND M.A. PIZAÑA

the value of n is not relevant, we simply write d
∗
z d1 (meaning d

n
z d1 for some

n ≥ 0) in which case we say that d1 is a descendant of d and that d is an ancestor
of d1. Note that M halts on input w if and only if 0qw z d for some halting
configuration d (that is, there is no configuration d1 satisfying d z d1). Without
loss of generality, we assume Q, Γ and {0,1} to be mutually disjoint sets. This
convention allows unambiguous identification of the several parts of a timestamped
configuration d = tuqv.

Recall that TM denotes the class of all Turing machines and that TMW denotes
the class of pairs (M,w), where w is an input string for M ∈ TM. The class of all
pairs (M,d) where d is a timestamped configuration of M is denoted by TMD.

Observe that, since the transitions in a Turing machine M are specified by the
transition function δ ∶ Q×Γ→ Q×Γ×{←,→}, the number of predecessors of a given
configuration d is always finite: ∣{d0 ∶ d0 z d}∣ ≤ ∣Q∣∣Γ∣. Thanks to timestamps, the
number of ancestors of a configuration d is also finite: If t is the timestamp of d,
we have that ∣{d0 ∶ d0

∗
z d}∣ ≤ 1+ ∣Q∣∣Γ∣+(∣Q∣∣Γ∣)

2
+⋯+(∣Q∣∣Γ∣)

t. On the other hand,
the number of successors is either 0 or 1. In particular for any two descendants
d1, d2 of d we have either d1

∗
z d2 or d2

∗
z d1.

2.5. Clique graphs. We identify induced subgraphs with their corresponding ver-
tex sets, in particular we prefer to write x ∈ G instead of x ∈ V (G). The neigh-
borhood of a vertex is denoted by N(x) and the closed neighborhood by N[x] =
N(x) ∪ {x}. We also write NG(x), NG[x] when we want to emphasize the graph
that we are considering. A vertex x is dominated if there is some vertex y ≠ x such
that N[x] ⊆ N[y]. A clique of a graph, is a maximal complete subgraph. Given a
family F of sets, the intersection graph G = Ω(F ) of F is the graph having F as
the vertex set (V (G) = F ) and where two vertices X,Y ∈ F are adjacent-or-equal
(X ≃ Y ) wheneverX∩Y ≠ ∅. In clique graph theory, the adjacency-or-equality rela-
tion (≃) is usually more useful than adjacency relation (∼). The clique graph K(G)

of a graph G is the intersection graph of its set of cliques (considered as sets, as per
our convention that identifies induced subgraphs with their corresponding vertex
sets). Iterated clique graphs are defined by K0

(G) = G and Kn+1
(G) =K(Kn

(G)).
A graph G is clique-convergent if Kn

(G) ≅ Km
(G) for some n < m; it is clique-

divergent otherwise. A graph is a cone if it contains an apex, which is a vertex
adjacent to all other vertices. A graph G is clique-Helly if every collection of pair-
wise intersecting cliques has a nonempty total intersection; G is quasi clique-Helly
if G − x is clique-Helly for some vertex x ∈ G. Given a triangle T = {x, y, z} of a
graph G, its extended triangle is T̂ = {u ∈ G ∶ ∣N(u) ∩ T ∣ ≥ 2}. Although “apex”
is defined for graphs, we can apply the concept to extended triangles as per our
convention. Given a vertex x ∈ G, its star is x∗ = {q ∈ K(G) ∶ x ∈ q}. Stars may
or may not be cliques of cliques of G (i.e. cliques of K(G) and vertices of K2

(G))
since they may not be maximal. Cliques of cliques which are not stars are called
neckties. The following lemma has not been explicitly stated in this way before,
but all its statements are well known in the literature.

Lemma 2.6. (1) N[x] = ∪x∗.
(2) For q a clique, q ∈ x∗ if and only if q ⊆ N[x].
(3) Let Q be a clique of cliques of a graph G. If x ∈ ∩Q for some x, then Q is

a star Q = x∗, otherwise, it is a necktie and ∩Q = ∅.



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 9

(4) Given x ∈ G, x∗ is always a complete subgraph of K(G), and hence it is a
clique of K(G) if and only if it is maximal.

(5) Given x∗, y∗ ∈K2
(G), they are different if and only if N[x] ≠ N[y].

(6) x∗ ⊆ y∗ if and only if N[x] ⊆ N[y].
(7) Given x ∈ G, x∗ is a clique of cliques if and only if there is no necktie Q of

G containing x∗ and there is no y ∈ G with N[x] ⊊ N[y].
(8) Given x∗, y∗ ∈ K2

(G), we have that x∗ ≃ y∗ if and only if x ≃ y. Note
however that it may be the case that x ∼ y, x ≠ y and x∗ = y∗.

Proof. (1) y ∈ N[x] if and only if y ∈ q ∈ x∗ for some q.
(2) Clearly q ∈ x∗ implies q ⊆ N[x]. Conversely, q ⊆ N[x] implies x ∈ q since q

is maximal and x is an apex of N[x]. Hence q ⊆ N[x] implies q ∈ x∗.
(3) If x ∈ ∩Q, then x ∈ q for all q ∈ Q and hence Q ⊆ x∗, the maximality of Q

gives the equality. The last statement is obvious.
(4) For any q, q′ ∈ x∗, we have q ∩ q′ ⊇ {x} ≠ ∅ and hence q ≃ q′ in K(G). It

follows that x∗ is (induce) a complete subgraph of K(G). Then x∗ only
needs to be maximal to be a clique of cliques.

(5) Immediate from (2)
(6) By (1), x∗ ⊆ y∗ implies N[x] = ∪x∗ ⊆ ∪y∗ = N[y]. Conversely, by (2)

N[x] ⊆ N[y] implies that q ∈ x∗ ⇒ q ⊆ N[x] ⊆ N[y] ⇒ q ∈ y∗ and hence
x∗ ⊆ y∗.

(7) By (4) x∗ is not a clique of cliques, only when it is not maximal. By (3) any
clique of cliques containing x∗ properly, must be either a necktie or a star.
By (5) and (6) x∗ is contained properly by y∗ if and only if N[x] ⊊ N[y].

(8) x ≃ y if and only if x, y ∈ q for some q if and only if q ∈ x∗ ∩ y∗ if and only
if x∗ ≃ y∗.

�

We shall need the following two theorems:

Theorem 2.7 ([6, 24]). If a graph G is clique-Helly without dominated vertices,
then G ≅K2

(G). Moreover, the isomorphism ∗ ∶ G→K2
(G) is given by ∗(x) = x∗.

Theorem 2.8 ([5, 24, 25]). A graph G is clique-Helly if and only if, for every
triangle T of G, its extended triangle, T̂ , is a cone.

Both theorems were originally stated only for finite graphs. But it is straightfor-
ward to verify that the standard proofs are valid for the infinite case: Theorem 2.7
is valid for any infinite graph, and Theorem 2.8 is valid for locally finite graphs (i.e.
the degree of every vertex is finite).

3. Overview of the Proof of Theorem 1.2

Let us begin with an informal description of the proof of Theorem 1.2. A detailed
proof is given in the next section.

The key idea is to reduce the halting problem to the clique-convergence problem
by emulating Turing machine transitions with iterated clique graphs. Then we
shall have that whenever the Turing machine halts, the corresponding sequence
G,K2

(G),K4
(G), . . . stabilizes (i.e. K2a

(G) ≅ K2b
(G) for some b < a), and vice

versa. This last condition is equivalent to clique-convergence, since, for the family
of graphs that we use in the reduction, Kn

(G) ≅ Km
(G) is only possible when n

and m have the same parity.



10 C. CEDILLO AND M.A. PIZAÑA

The emulation is obtained by constructing a computable function γ ∶ TMD →
AG such that whenever d z d′, we have K2

(γ(M,d)) ≅ γ(M,d′) (the λ in The-
orem 1.2 will be defined later). That is, γ is constructed to make the following
diagram commute:

TMD TMD

AG AG

γ

z

γ

K2

Now, take some Turing machine M , then for any two (M,d1), (M,d2) ∈ TMD,
γ(M,d1) and γ(M,d2) do not differ much, indeed we first construct a computable
function γ0 ∶ TM→ AG and then, γ(M,d) is obtained from γ0(M) by the addition
of at most one vertex (and its adjacencies).

Let us describe γ0(M). Take a Turing machineM = (Q,Σ,Γ, δ, q0,␣, F ), and take
the set of all timestamped configurations of M : D = {tuqw ∶ t ∈ N;u, v ∈ Γ∗; q ∈ Q}.
Then z is an asymmetric binary relation on D and hence we can consider D to be a
digraph with the adjacency relation given by z. We construct γ0(M) by producing,
for each d ∈D, six vertices and seven edges as in Figure 3(a), in particular, the six
vertices produced are labeled as 1d,2d, . . . ,6d. Note that these labels are strings
over the alphabet {0,1, . . . ,6} ∪Q ∪ Γ. Also, for each arrow d z d′ of D, we add 6
additional edges to γ0(M) as in Figure 3(b). Note that γ0 maps a Turing machine
M (which is a finite tuple) to an automatic presentation of a graph γ0(M) (which is
a pair of finite automata), both of which are finite objects regardless of the infinity
of D or the infinity of the graphs represented by γ0(M). When the full definitions
of γ0, γ and λ are presented and the related theorems considered, it will be clear
that all these functions are algorithmically computable.

In Figure 3(d) we depict all the types of cliques of γ0(M): 5 (red) edges for each
d and for each dz d′, two blue triangles and one clique on 4 vertices.

As an example, the fragment of the digraph D depicted in Figure 3(c)(left)
produces the fragment of γ0(M) shown in Figure 3(c)(right); there, for clarity, the
vertices of the form 4d, 5d and 6d are omitted from the drawing.

In what follows, we shall omit vertices of the form 4d, 5d and 6d from drawings.
The role of these vertices is crucial but minor: they are present to prevent the
existence of dominated vertices (so we can use Theorem 2.7) and also to prevent
undesired isomorphisms, (see the proof of Lemma 4.16).

Hence, paths in D like d z d′ z d′′ z ⋯ z d‵′ produce strips in γ0(M), like
that in Figure 5. It is known since Escalante [6] that these kind of strips are K2-
invariant, and that certain local perturbations on these strips, like the red vertex in
Figure 4(a), are traveling perturbations, in the sense that the second clique graph
of the graph in Figure 4(a) is isomorphic to the graph in Figure 4(b). Our strips
are more complicated than those of Escalante since Escalante’s were only circular
strips, but we can have a lot of branching, and our strips may also have loose ends
(for instance, when the path in D ends at d‵′, i.e. when d‵′ is a halting configuration
of M), in this last case, the traveling perturbation simply disappears at the end of
the corresponding strip. All of this requires a new detailed analysis of the clique
graph transformation which we will do in Lemma 4.14.

We use the properties mentioned above to simulate Turing machine transitions:
Just define γ(M,d) as the graph obtained from γ0(M) by the addition of the (red)
vertex 0d (and its edges) as in Figure 4(a). Thus the desired property is obtained:



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 11

K2
(γ(M,d)) ≅ γ(M,d′). We shall prove that γ(M,d) is clique-convergent if and

only if M reaches a halting configuration when it starts from configuration d (see
the proof of Lemma 4.18). The computability of γ is inherited from γ0, since the
automata describing γ0 can be easily (and algorithmically) amended to obtain the
automata for γ.

The final step is to define λ ∶ TMW → AG by λ(M,w) = γ(M,0q0w) and the
result follows. The next section contains a detailed proof of Theorem 1.2.

4. Proof of Theorem 1.2

Take a Turing machineM = (Q,Σ,Γ, δ, q0,␣, F ). We define V = {1,2,3,4,5,6} ⋅N ⋅
Γ∗ ⋅Q⋅Γ∗. We shall use V as the set of vertices of the automatic graph γ0(M). Thus,
a vertex xd = xts = xtuqv ∈ V is the concatenation of a label x ∈ {1,2, . . . ,6} and a
timestamped configuration d ∈ D. We also define V̂ = {1,2,3,4,5,6} ⋅ N̂ ⋅ Γ∗ ⋅Q ⋅ Γ∗.
Thanks to Theorem 2.1, both V and V̂ are regular languages (and automatic unary
relations). The only difference between V and V̂ is that the timestamps t ∈ N̂

occurring in xts ∈ V̂ may have an additional 0 at the end of the timestamp. When
this additional 0 is present, some misalignment of the rest of the information occurs
among equivalent timestamped configurations:

⊗(
611abqabc

6110abqabc
) = (

6

6
)(

1

1
)(

1

1
)(
a

0
)(
b

a
)(
q

b
)(
a

q
)(
b

a
)(
c

b
)(
◇

c
).

The automaton recognizing this is perhaps the trickiest of all the automata consid-
ered here and hence we present it explicitly:

Lemma 4.1. The relation T0 = {(xt1s, xt2s) ∈ V̂ 2
∶ t2 = t10} is effectively auto-

matic.

Proof. Let us consider first the relation:

T ′0 = {(uv, u0v) ∶ u ∈ {0,1, . . . ,6}∗, v ∈ (Γ ∪Q)
∗
}.

This relation is recognized by the automaton M ′
= (Q′,Σ′, δ′, q′0, F

′
), where

Q′
= {q′0, q

′
1, q

′
2} ∪ Γ ∪ Q, Σ′

= {0,1, . . . ,6} ∪ Γ ∪ Q, q′0 = q′0, F = {q′1}, and the
transition function δ′ is given by the following rules:

(1) δ′(q′0, (
a
a
)) = q′0 for a ∈ {0,1, . . . ,6}.

(2) δ′(q′0, (
b
0
)) = b for b ∈ Γ ∪Q.

(3) δ′(b, (b
′

b
)) = b′ for b, b′ ∈ Γ ∪Q.

(4) δ′(b, (◇
b
)) = q′1 for b ∈ Γ ∪Q.

(5) δ′(∗,∗) = q′2 otherwise.
Indeed, note that q′2 is the dead state and that everything not conforming to

our pattern goes there (rule 5) and is rejected. The state q′0 consumes input until
the extra 0 is found (rule 1), when the extra 0 is found, it comes as (

b
0
) for some

b ∈ Γ ∪Q, at this point the automaton transits to the state b (rule 2). Here, it is
crucial that 0 /∈ Γ ∪Q and b /∈ {0,1, . . . ,6} (according to our assumption), so that
there is no confusion on whether to use rule 1, rule 2 or rule 5. This state b has
the purpose of remembering the unmatched “b” that came with the extra 0. Hence,
when reading the next symbol (

b′

b
) it checks that the bottom part is indeed a b

(otherwise the automaton transits to the dead state q′2) and then it transits to the
new state b′ (rule 3), waiting to match this b′ with the bottom part of the next



12 C. CEDILLO AND M.A. PIZAÑA

(b)

d d′
1d

2d

3d

1d′

2d′

3d′

4d

5d

6d

4d′

5d′

6d′γ0

d
1d

2d
3d

4d
5d

6d

γ0

(a) (d)

d̄0 d̄

d0 d

γ0

d′ d′′
1d0 1d 1d′ 1d′′

2d0 2d

2d′ 2d′′

3d0 3d 3d′ 3d′′
1d̄0

2d̄0

3d̄0

1d̄

2d̄

3d̄

(c)

Figure 3. The construction of γ0(M). Vertices of the form 4d,
5d and 6d are omitted in (c).

symbol. The automaton keeps using rule 3 until the end of input is found (rule 4)
and then it enters the final state q′1 and accepts.

Recall that V̂ is both a regular language and an automatic unary relation, so
that “u ∈ V̂ ” (viewing V̂ as a set) is the same as “V̂ (u)” (viewing V̂ as an unary
relation). Now the required relation T0(u, v) = T

′
0(u, v)∧u ∈ V̂ ∧ v ∈ V̂ is automatic

by Theorem 2.3. It should be clear that all these constructions can be performed
algorithmically from the original Turing machine M = (Q,Σ,Γ, δ, q0,␣, F ). �



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 13

Definition 4.2. We now define γ0 ∶ TM→ AG (see Figure 3): The set of vertices
of γ0(M) is V (γ0(M)) = V = {1,2,3,4,5,6}⋅N⋅Γ∗ ⋅Q⋅Γ∗. Two such vertices xd, x1d1

are adjacent in γ0(M) if and only if any of the following conditions holds:
(1) d = d1 and {x,x1} ∈ {{1,2},{1,4},{2,3},{2,5},{3,6},{4,5},{5,6}}
(2) dz d1 and (x,x1) ∈ {(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)}
(3) d1 z d and (x1, x) ∈ {(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)}

By Theorem 2.1, the set of vertices of γ0(M) is automatic. We show now that
the set of edges of γ0(M) is also automatic:

Lemma 4.3. Given a Turing machine M , γ0(M) is an automatic graph.

Proof. We already know that the successor relation R+1 is automatic (when t, t+1 ∈
N̂ have the same length, see subsection 2.3) and that the transition relation s z s′

is automatic for configurations s = uqv, s′ = u′q′v′ by Theorem 2.5. Hence the
transition relation is also automatic for timestamped configurations d z d′ since
regular languages (i.e. the convolutions of these relations) are effectively closed
under concatenation by Theorem 2.1.

We have defined other automatic relations: V , V̂ , and T0 (Lemma 4.1). Also,
V̂ 2 is an automatic relation by Theorem 2.3 since V̂ 2

(w1,w2) = (w1 ∈ V̂ ∧w2 ∈ V̂ ).
V̂ 2 can be viewed as a set of pairs or as a relation ((w1,w2) ∈ V̂

2
⇔ V̂ 2

(w1,w2)). It
should be clear now that all the following relations are automatic (in part because
of Theorems 2.1 and 2.3, and in part because it is easy to give the corresponding
automata):

T= = {(x0t0s0, x1t1s1) ∈ V̂
2
∶ t0 = t1},

D= = {(x0d0, x1d1) ∈ V̂
2
∶ d0 = d1},

Dz = {(x0t0s0, x1t1s1) ∈ V̂
2
∶ t0s0 z t1s1 and ∣t∣ = ∣t + 1∣},

E0 =

⎧
⎪⎪
⎨
⎪⎪
⎩

(x0d0, x1d1) ∈ V̂
2
∶ {x0, x1} ∈

⎧
⎪⎪
⎨
⎪⎪
⎩

{1,2},{1,4},{2,3},{2,5},

{3,6},{4,5},{5,6}

⎫
⎪⎪
⎬
⎪⎪
⎭

⎫
⎪⎪
⎬
⎪⎪
⎭

,

E1 =

⎧
⎪⎪
⎨
⎪⎪
⎩

(x0d0, x1d1) ∈ V̂
2
∶ (x0, x1) ∈

⎧
⎪⎪
⎨
⎪⎪
⎩

(1,1), (2,1), (2,2),

(3,1), (3,2), (3,3)

⎫
⎪⎪
⎬
⎪⎪
⎭

⎫
⎪⎪
⎬
⎪⎪
⎭

,

Ð→
E = (D= ∧E0) ∨ (Dz ∧E1),

E(w1,w2) = (w1 ∈ V ) ∧ (w2 ∈ V ) ∧ ∃w′
1 ∃w

′
2

⎛

⎜
⎜
⎜

⎝

(T=(w1,w
′
1) ∨ T0(w1,w

′
1))∧

(T=(w2,w
′
2) ∨ T0(w2,w

′
2))∧

(
Ð→
E (w′

1,w
′
2) ∨

Ð→
E (w′

2,w
′
1))

⎞

⎟
⎟
⎟

⎠

.

This last relation is precisely the adjacency relation in γ0(M) and hence the
result follows. �

It should be clear that the required automata for γ0(M) can be algorithmically
constructed from the given Turing machine:

Remark 4.4. γ0 ∶ TM→ AG is a computable function.

Definition 4.5. A timestamped configuration d is non-terminal if there are d′, d1 ≠

d such that dz d′ and that either d′ z d1 or d1 z d′. It is terminal otherwise.



14 C. CEDILLO AND M.A. PIZAÑA

3

2

1

d0 d d′ d′′ d′′′ d′‵′

0d

(a)

3

2

1

d0 d d′ d′′ d′′′ d′‵′

0d′

(b)

Figure 4. γ(M,d) and γ(M,d′). Vertices of the form 4d, 5d and
6d are omitted from the drawings.

Note that if d is terminal then either d or d′ (when d z d′) is a halting time-
stamped configuration. Also, every halting timestamped configuration d is terminal.

We can now define γ ∶ TMD → AG (see Figure 4(a)): γ(M,d) is almost the same
as γ0(M). In fact, we define γ(M,d) ∶= γ0(M) whenever d is terminal. Otherwise,
γ(M,d) is obtained from γ0(M) by the addition of exactly one vertex (namely 0d)
and its adjacencies:

Definition 4.6. Take (M,d) ∈ TMD. If d is terminal, define γ(M,d) ∶= γ0(M).
Otherwise (d is non-terminal), define V (γ(M,d)) ∶= V (γ0(M))∪{0d}; in this case,
there is some d′ with dz d′, the adjacencies in γ(M,d) are the same as in γ0(M),
except that the neighbors of 0d are given by (if there is no d′′ with d′ z d′′, simply
remove 1d′′ from the set):

N(0d) ∶= {xd̄ ∶ x ∈ {2,3}, d̄z d′} ∪ {1d′,2d′,3d′,1d′′}.

The red squares in Figure 4 are there to remind us that multiple vertices like
those may be present in N(0d) whenever ∣{d̄ ∶ d̄ z d′}∣ > 1. Note that N(0d) is
exactly the extended triangle of {3d,1d′,2d′} in γ0(M) (the left blue triangle in
Figure 4(a)). Also, note that 2d′ is always an apex of this extended triangle in
γ0(M). For future reference, we now state the following:

Remark 4.7. If d is terminal, then γ(M,d) = γ0(M). If d is non-terminal, then
γ(M,d) is obtained from γ0(M), by the addition of exactly one vertex (namely: 0d)
and its edges as in Figure 4(a).

The amendments made to γ0(M) to obtain γ(M,d) are finite (one vertex and
a finite number of edges). By Theorem 2.1 and Theorem 2.3 finite relations are



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 15

Figure 5. The types of triangles of γ0(M). Vertices of the form
4d, 5d and 6d are omitted from the drawing.

effectively automatic and disjunctions of automatic relations are also effectively
automatic, hence γ(M,d) is effectively automatic and we have:

Remark 4.8. γ ∶ TMD → AG is a computable function.

Note that, when present, 0d is always dominated by 2d′ (for d′ satisfying dz d′)
but no other vertex of γ(M,d) is dominated as we shall see in the next lemma.
Recall that the star morphism ∗ ∶ G→K2

(G) is given by ∗(x) ∶= x∗.

Lemma 4.9. γ0(M) is clique-Helly without dominated vertices. In particular we
have that the star morphism ∗ ∶ γ0(M)→K2

(γ0(M)) is an isomorphism and that,
for all n ≥ 0, K2n

(γ0(M)) ≅ γ0(M).

Proof. By Theorems 2.7 and 2.8, it is sufficient to show that in γ0(M) every ex-
tended triangle has an apex and that there are no dominated vertices.

By construction (see Figure 3), every triangle of γ0(M), is contained in a set of
the form {xd1 ∶ x ∈ {1,2,3} and d1 ∈ {d, d′}} for some d, d′ with d z d′. It follows
that all triangles of γ0(M) are of one the following forms:

{1d,2d,1d′}, {2d,3d,1d′}, {2d,3d,2d′},

{2d,1d′,2d′}, {3d,1d′,2d′}, {3d,2d′,3d′}.

By direct inspection, we can see that the apices of the corresponding extended
triangles are 2d, 2d, 3d, 1d′, 2d′ and 2d′ respectively: In Figure 5, for each blue
triangle, the apex of its corresponding extended triangle have been marked with a
circle (some extended triangles share apex). Note that these vertices are apices of
their extended triangles regardless of the multiplicity of predecessors of d and d′

and regardless of the existence of a successor of d′. Hence by Theorem 2.8, γ0(M)

is clique-Helly.
There are no dominated vertices in γ0(M) since if we had xd1 ≠ yd2 andN[xd1] ⊆

N[yd2], then N(xd1) would be a cone and hence connected. However (thanks to
the vertices of the form 4d,5d and 6d) every vertex of γ0(M) has a disconnected
neighborhood.

It follows by Theorem 2.7 that K2n
(γ0(M)) ≅ γ0(M). �

Recall that the number of predecessors of any timestamped configuration is at
most ∣Q∣∣Γ∣ and that the number of successors is at most one. Since γ(M,d) is
obtained from γ0(M) by adding (at most) one vertex and a finite number of edges,
we have:

Remark 4.10. γ(M,d) is quasi clique-Helly with at most one dominated vertex
and of bounded degree.



16 C. CEDILLO AND M.A. PIZAÑA

Lemma 4.11. If d
∗
z d1 and d

∗
z d2, with d1 ≠ d2 and d1 non-terminal, then

γ(M,d1) ≇ γ(M,d2).

Proof. By way of contradiction, assume there is such an isomorphism α ∶ γ(M,d1)→

γ(M,d2). Since d1 is non-terminal, 0d1 is a vertex of γ(M,d1) and it is the only
dominated vertex of γ(M,d1). Since dominated vertices go onto dominated vertices
under any isomorphism, it follows that 0d2 must also be a vertex γ(M,d2) and that
α(0d1) = 0d2.

Now, take d′1 and d′2 such that d1 z d′1 and d2 z d′2 and observe that the vertex
2d′1 ∈ γ(M,d1) is the only apex of N(0d1) and that 2d′2 ∈ γ(M,d2) is the only apex
of N(0d2); it follows that α(2d′1) = 2d′2.

Also, {2d̄1 ∶ d̄1 z d′1} is exactly the set of vertices of N(0d1) which have degree
3 (in N(0d1)) and belong to a complete on four vertices (and something analogous
occurs in γ(M,d2)). It follows that the set {2d̄1 ∶ d̄1 z d′1} is bijectively mapped
by α onto {2d̄2 ∶ d̄2 z d′2}. Similarly, whenever d̄1 is an ancestor of d′1, we must
have α(2d̄1) = 2d̄2 for some ancestor d̄2 of d′2, i.e. that {2d̄1 ∶ d̄1

∗
z d′1} is bijectively

mapped by α onto {2d̄2 ∶ d̄2
∗
z d′2}.

Since d
∗
z d1 z d′1, d

∗
z d2 z d′2 and d1 ≠ d2, it follows that d′1 ≠ d′2 and that

either d′2
∗
z d′1 or d′1

∗
z d′2, assume the latter without loss of generality. It follows

that the (finite) number of ancestors of d′1 is less than the (also finite) number of
ancestors of d′2. This is a contradiction with the last statement in the previous
paragraph. �

It is convenient to recall that all types of cliques of γ0(M) are depicted in Fig-
ure 3(d). The cliques of γ(M,d) are mostly the same, and the few differences can
be read from Figure 4. The explicit list of all these cliques is given in Table 1.
In the table, the condition “d1 z d2” means “∃d1∃d2, d1 z d2” , also, just to be
explicit about it, “d1 /z d2” means “¬(∃d1∃d2, d1 z d2)”. Lemma 4.12 shows that
Table 1 is correct:

Lemma 4.12. All the cliques of γ0(M) are listed in Table 1(top) parameterized
by a generic configuration d. The cliques of γ(M,d) are mostly the same and the
variations are all listed in Table 1(bottom).

Proof. Let us study the cliques of γ0(M) first. Consider any generic timestamped
configuration d. By construction, it produces 6 vertices and 7 edges in γ0(M) as
shown in Figure 3(a).

Note that the edges e1d ∶= {1d,4d}, e2d ∶= {2d,5d}, e3d ∶= {3d,6d}, e4d ∶= {4d,5d},
e5d ∶= {5d,6d} are always cliques. The edges e1d ∶= {1d,2d}, e2d ∶= {2d,3d} are
cliques only when d is an isolated configuration, that is, when there is no d0 with
d0 z d and there is no d′ with dz d′.

Now, assume, d is not an isolated configuration. Then either d0 z d or d z d′

(or both) for some d0, d
′. Without loss of generality (renaming the configurations

if necessary), we may assume d z d′. By construction, every clique of γ0(M)

(except e1d and e2d mentioned above) must be contained in a set of the form
{xd1 ∶ x ∈ {1,2, . . . ,6}, d1 ∈ {d, d′}} for some d, d′ with d z d′. Figure 3(d) shows
the three possible types of cliques which are not edges. We give them a name:
q1d ∶= {1d,2d,1d′}, q2d ∶= {2d,3d,1d′,2d′} and q3d ∶= {3d,2d′,3d′}.

These are all the cliques of γ0(M) as indicated in Table 1 (top).



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 17

Now fix some d, and let us consider the cliques of γ(M,d). By definition of
γ(M,d), it is identical to γ0(M) when d is terminal. Hence, assume from now on
that d is not terminal.

Since only one vertex, 0d, has been added to γ0(M), the cliques of γ(M,d) are
mostly the same as those of γ0(M), except around 0d.

Around 0d, we can see the differences in Figure 4(a). Recall that N(0d) = {xd̄ ∶
x ∈ {2,3}, d̄ z d′} ∪ {1d′,2d′,3d′,1d′′} and that the red squares in Figure 4(a) are
there to remind us that there may be other relevant vertices there when there are
configurations d̄ with d ≠ d̄z d′.

Assume first that d z d′ z d′′. Then, we see in Figure 4(a) that three types
of cliques of γ0(M) are extended with the addition of 0d, namely: q2d̄ and q3d̄

whenever d̄ z d′ (this includes d as one of those d̄), and also the clique q1d′ , hence
the extended cliques are:

q̂2d̄ ∶= q2d̄ ∪ {0d} = {2d̄,3d̄,1d′,0d,2d′} ∀d̄, d̄z d′.

q̂3d̄ ∶= q3d̄ ∪ {0d} = {3d̄,0d,2d′,3d′} ∀d̄, d̄z d′.

q̂1d′ ∶= q1d′ ∪ {0d} = {1d′,0d,2d′,1d′′}.

Also note that the triangle {2d′,3d′,1d′′} is not a clique of γ0(M) (since it is
properly contained in q2d′), but all of these vertices are adjacent to 0d. Hence we
have that this is a new clique of γ(M,d):

q0d ∶= {0d,2d′,3d′,1d′′}.

We know that d is non-terminal, hence in the case when we do not have d z
d′ z d′′, it is necessary, by the definition of “non-terminal” that d z d′ and d̄ z d′

for some d′ and d̄ ≠ d (and d′ /z d′′ for all d′′). In this case, the vertex 1d′′ does
not exist and hence, the above mentioned cliques q̂1d′ and q0d also do not exist,
since when we remove the vertex 1d′′ from these cliques the remaining vertices are
contained in the cliques q̂2d and q̂3d respectively. Therefore in this case, only the
extended cliques q̂2d̄ and q̂3d̄ prevail.

All of this is reported in Table 1(bottom). �

Now, we need to characterize the neckties of γ(M,d):

Lemma 4.13. γ(M,d) has exactly one necktie when dz d′ and d′ is non-terminal.
Otherwise γ(M,d) has no neckties. The unique necktie of γ(M,d) is given by
Q0d = {q2d̄′ ∶ d̄

′
z d′′} ∪ {q0d, q3d′ , q1d′′} when d′ z d′′ z d′′′, or

Q0d = {q2d̄′ ∶ d̄
′
z d′′} ∪ {q0d, q2d′ , q3d′} when d′ z d′′ /z d′′′ and d′ ≠ d̄′ z d′′.

Proof. The reader could find it convenient to follow the steps of this proof on
Figure 4.

Let Q be a necktie of γ(M,d), that is, Q ∈ K2
(γ(M,d)) and ∩Q = ∅. Since

γ0(M) is clique-Helly it does not have any neckties (by Theorem 2.7), therefore
Q must contain a clique q that contains the vertex 0d: 0d ∈ q ∈ Q. According to
Table 1(bottom), the cliques containing 0d are 0d∗ ⊆ {q̂2d̄, q̂3d̄ ∶ d̄z d′}∪ {q̂1d′ , q0d}.
Note that every clique containing 0d also contains 2d′, moreover, for every q ∈

K(γ(M,d)) with q ≠ q0d we have (q−{0d}) ∈K(γ0(M)). It follows that, whenever
q, q′ ∈K(γ(M,d)) with q, q′ ≠ q0d and q∩ q′ ≠ ∅, we have also that (q−{0d})∩ (q′ −
{0d}) ≠ ∅.



18 C. CEDILLO AND M.A. PIZAÑA

Cliques of γ0(M) associated with a generic d Required conditions

q1d ∶= {1d,2d,1d′}

q2d ∶= {2d,3d,1d′,2d′}

q3d ∶= {3d,2d′,3d′}

dz d′

e1d ∶= {1d,2d}, e2d ∶= {2d,3d}. d0 /z d /z d′

e1d ∶= {1d,4d}, e2d ∶= {2d,5d}, e3d ∶= {3d,6d},
e4d ∶= {4d,5d}, e5d ∶= {5d,6d}.

None

Extended and new cliques of γ(M,d) Required conditions

q̂2d̄ ∶= {2d̄,3d̄,1d′,0d,2d′} ∀d̄, d̄z d′

q̂3d̄ ∶= {3d̄,0d,2d′,3d′} ∀d̄, d̄z d′
d is non-terminal

q̂1d′ ∶= {1d′,0d,2d′,1d′′}

q0d ∶= {0d,2d′,3d′,1d′′}
dz d′ z d′′

Table 1. Cliques of γ0(M) and of γ(M,d) and the conditions for
their existence.

AB

C/C̄

D/D̄

EF

G

1d

2d

3d

1d′

2d′

3d′

1d′′

2d′′

3d′′

1d′′′

Figure 6. Cliques of γ(M,d) adjacent to q0d.

Assume first that q0d /∈ Q. Then P ∶= {(q − {0d}) ∶ q ∈ Q} is a set of mutually
intersecting cliques of γ0(M). Since γ0(M) does not have neckties (by Theorem 2.7
and Lemma 4.9), it follows that ∩P ≠ ∅, and hence ∩Q ≠ ∅ also, a contradiction.
If follows that q0d ∈ Q.

The other cliques of γ(M,d) intersecting q0d are: q̂2d̄ and q̂3d̄ (for each d̄ z d′);
q̂1d̄′ and q2d̄′ (for each d̄

′
z d′′); and also q3d′ and q1d′′ . To improve the readability of

the subsequent case analysis, we prepared the following propositions (see Figure 6):
A: q0d ∈ Q. B: q̂2d̄ ∈ Q for some d̄z d′.
C: q̂1d′ ∈ Q. C: q̂1d̄′ ∈ Q for some d̄′ z d′′ with d̄′ ≠ d′.
D: q2d′ ∈ Q. D: q2d̄′ ∈ Q for some d̄′ z d′′ with d̄′ ≠ d′.
E: q3d′ ∈ Q. F : q̂3d̄ ∈ Q for some d̄z d′.
G: q1d′′ ∈ Q.

Then, we already know that A, and we have that A ∧ F ∧ E implies 3d′ ∈ ∩Q
(a contradiction) since any other clique intersecting q0d, q̂3d̄ and q3d′ , also contains



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 19

3d′. Similarly we have:

A ∧ F ∧ (B ∨C)⇒ 2d′ ∈ ∩Q.

Therefore we conclude that ¬F (since we know that A and since, by the maximality
of Q, we have that A∧F ⇒ (A∧F ∧E)∨(A∧F ∧(B∨C))⇒ (3d′ ∈ ∩Q)∨(2d′ ∈ ∩Q)

a contradiction). Moreover:
A ∧B ⇒ 2d′ ∈ ∩Q.

A ∧C ⇒ 2d′ ∈ ∩Q ∨ 1d′′ ∈ ∩Q.

A ∧C ⇒ 1d′′ ∈ ∩Q.

It follows that ¬(F ∨B ∨C ∨C). Now, we also observe that:

¬(D ∨G)⇒ 3d′ ∈ ∩Q and

¬E ⇒ 1d′′ ∈ ∩Q.

We conclude that A ∧E ∧ (D ∨G) and also, by the maximality of Q, that A ∧E ∧

D ∧ (D̄ ∨G). This last proposition characterizes Q and hence we have that:
Q0d = {q2d̄′ ∶ d̄

′
z d′′} ∪ {q0d, q3d′ , q1d′′} when d′ z d′′ z d′′′, or

Q0d = {q2d̄′ ∶ d̄
′
z d′′} ∪ {q0d, q2d′ , q3d′} when d′ z d′′ /z d′′′ and d′ ≠ d̄′ z d′′,

as claimed. Finally, note that the above conditions for the existence of Q are
equivalent to: d′ is non-terminal. The precondition d z d′ is necessary even for 0d
to exist. �

Lemma 4.14. d z d′ implies K2
(γ(M,d)) ≅ γ(M,d′). Otherwise (d /z d′ for all

d′), K2
(γ(M,d)) ≅ γ0(M) = γ(M,d).

Proof. When d /z d′ for all d′, d is terminal and then, by definition, γ(M,d) =

γ0(M). By Lemma 4.9 we have γ(M,d) = γ0(M) ≅ K2
(γ0(M)) = K2

(γ(M,d)) as
claimed.

When d z d′, but d is still terminal, so is d′ and hence γ(M,d′) = γ0(M) ≅

K2
(γ0(M)) =K2

(γ(M,d)) as claimed.
Now suppose that d z d′, d non-terminal, but d′ is terminal. Now the vertex

0d does exist, but, by Lemma 4.13, Q0d does not. Hence K2
(γ(M,d)) ≅ γ0(M) =

γ(M,d′) as claimed.
Assume from now on, that dz d′ and that d′ is non-terminal (then d is also non-

terminal). Observe that the vertex 0d is always dominated by 2d′. By Lemma 4.13,
there is exactly one necktie Q0d. Note that this necktie does not contain any star
xd∗1. By Lemma 2.6(7), it follows that every xd∗1 (with xd1 ≠ 0d) is a clique of
cliques of γ(M,d), and since 0d is the only dominated vertex (by Remark 4.10),
all these stars xd∗1 are different by Lemma 2.6(5). Moreover, by Lemma 2.6(8),
all the stars induce in K2

(γ(M,d)) a subgraph isomorphic to γ0(M). It follows
that K2

(γ(M,d)) can be obtained (up to isomorphism) by adding exactly one
vertex (namely Q0d) and its adjacencies to γ0(M). Now (see Figure 4) note that
∪Q0d = {xd̄′ ∶ x ∈ {2,3}, d̄′ z d′′}∪{0d,1d′′,2d′′,3d′′,1d′′′} = Nγ(M,d′)(0d

′
)∪{0d} (if

the vertex 1d′′′ is not present simply drop it from the formula). Then, for xd1 ≠ 0d
the adjacencies of Q0d in K2

(γ(M,d)) are given by Q0d ∼ xd
∗
1 ⇔ ∃q, q ∈ Q0d ∩ xd

∗
1

⇔ ∃q, xd1 ∈ q ∈ Q0d ⇔ xd1 ∈ ∪Q0d ⇔ xd1 ∈ Nγ(M,d′)(0d
′
)⇔ xd1 ∼ 0d′ in γ(M,d′).

Hence, it follows that K2
(γ(M,d)) ≅ γ(M,d′). �



20 C. CEDILLO AND M.A. PIZAÑA

Lemma 4.15. For all d and a ≥ 0 there is some d1 with d
∗
z d1 such that

K2a
(γ(M,d)) ≅ γ(M,d1). Moreover, when d1 is non-terminal, we have d

a
z d1

and when it is terminal, we have d
b
z d1 for some b ≤ a.

Proof. If there is a d1 such that d
a
z d1 then, by iterated application of Lemma 4.14,

we have K2a
(γ(M,d)) ≅ γ(M,d1). Note that in this case, d1 may or may not be

terminal.
Otherwise, there is some b < a and some d1 with d

b
z d1 and such that d1 /z d2

for any d2. In this case d1 is terminal and γ(M,d1) = γ0(M) by definition of
γ(M,d1), (Definition 4.6). Hence, by Lemmas 4.14 and 4.9 we haveK2a

(γ(M,d)) =
K2a−2b

(K2b
(γ(M,d))) = K2a−2b

(γ(M,d1)) ≅ K
2a−2b

(γ0(M)) ≅ γ0(M) = γ(M,d1).
�

Lemma 4.16. If Kn
(γ(M,d)) ≅Km

(γ(M,d)) for some n <m, then K2b
(γ(M,d)) ≅

K2a
(γ(M,d)) for some b < a.

Proof. By Lemma 4.15, for every natural number c, there is some d1 such that
d

∗
z d1 and K2c

(γ(M,d)) ≅ γ(M,d1). This graph have many vertices whose neigh-
borhoods are isomorphic to an edgeless graph on 3 vertices (those of the form
5d2 ∈ V (γ(M,d1)). A direct examination of the cliques of γ(M,d1) (see Figure 3(d),
also consider the extra clique q0d = {0d,2d′,3d′,1d′′} in Figure 4) and their inter-
sections, shows that K2c+1

(γ(M,d)) ≅K(γ(M,d1)) does not have such vertices. It
follows that Kn

(γ(M,d)) ≅Km
(γ(M,d)) is only possible when n and m have the

same parity. Therefore, K2b
(γ(M,d)) ≅ K2a

(γ(M,d)) for either 2b = n < m = 2a
or 2b = n + 1 <m + 1 = 2a. �

Lemma 4.17. If K2a
(γ(M,d)) ≅K2b

(γ(M,d)) for some b < a then K2a
(γ(M,d)) ≅

γ0(M) ≅K2b
(γ(M,d)).

Proof. By Lemma 4.15, there are d1 and d2 with d
∗
z d1, d

∗
z d2 and such that

K2a
(γ(M,d)) ≅ γ(M,d1) and K2b

(γ(M,d)) ≅ γ(M,d2).
By Lemma 4.14 if d1 or d2 was terminal, we would have either γ(M,d1) = γ0(M)

or γ(M,d2) = γ0(M) and the result follows.
Assume now that d1 and d2 are non-terminal, then by Lemma 4.15, we have

d
a
z d1 and d

b
z d2. These d1 and d2, can not be equal, because the timestamps

must be different: if d = ts, d1 = t1s1 and d2 = t2s2 then we must have t1 = t + a >
t + b = t2. Hence, by Lemma 4.11, we get K2a

(γ(M,d)) ≅ γ(M,d1) ≇ γ(M,d2) ≅

K2b
(γ(M,d)), a contradiction. �

Lemma 4.18. M halts on input w if and only if λ(M,w) ∶= γ(M,0q0w) is clique-
convergent.

Proof. Recall that the starting configuration for M on input w is 0q0w (subsec-
tion 2.4). We shall show that the following propositions are equivalent:

(1) M halts on input w.
(2) 0q0w

∗
z d for some terminal d.

(3) K2b
(γ(M,0q0w)) ≅ γ0(M) for some b ≥ 0.

(4) K2a
(γ(M,0q0w)) ≅K2b

(γ(M,0q0w)) for some b < a.
(5) λ(M,w) ∶= γ(M,0q0w) is clique-convergent.



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 21

(1)⇔(2) By definition, M halts on input w if and only if 0q0w
∗
z d for some

halting (timestamped) configuration d (subsection 2.4). By definition of terminal
configuration (Definition 4.5), every halting configuration d is terminal, and every
terminal configuration is either a halting configuration or there is some halting
configuration d′ with d z d′. It follows that M halts on input w if and only if
0q0w

a
z d for some terminal configuration d and some integer a ≥ 0.

(2)⇔(3) By iterated application of Lemma 4.14 and the definition of γ(M,d)

(Definition 4.6), we have that 0q0w
b
z d and d terminal implies K2b

(γ(M,0q0w)) ≅

γ(M,d) ≅ γ0(M). Conversely, by Lemma 4.15, K2b
(γ(M,0q0w)) ≅ γ0(M) implies

that there is some d with 0q0w
∗
z d and γ(M,d) ≅K2b

(γ(M,0q0w)) ≅ γ0(M), then
d is necessarily terminal (by Definition 4.6).

(3)⇔(4) (3) implies (4) with a = b + 1 by Lemma 4.9. (4) implies (3) by
Lemma 4.17.

(4)⇔(5) This follows by definition of convergence and by Lemma 4.16. �

Hence we conclude that the first statement of Theorem 1.2 is true because of
Lemma 4.18 and Remark 4.8. The second statement is an immediate corollary of
the first, and the third statement follows by Remark 4.10.

This concludes the proof of Theorem 1.2.

5. Concluding Remarks

We have shown that clique-convergence is undecidable for automatic graphs. A
number of consequences can be drawn. For instance, when the graphs we used
here do converge, they converge to a 2-cycle of clique-Helly graphs (as defined in
[19]: Kn

(G) ≅Kn+2
(G) where both, Kn

(G) and Kn+1
(G), are clique-Helly). Thus

the problem of deciding whether a graph is eventually clique-Helly (i.e. Kn
(G) is

clique-Helly for some n) and the problem of deciding whether a graph is eventually
2-self-clique (i.e. Kn

(G) ≅ Kn+2
(G) for some n) are equivalent to the clique-

convergence problem in the classAG0. In particular, these problems are undecidable
for any class containing AG0. The clique-divergence problem is then also obviously
undecidable for automatic graphs. The same is true for the problem of recognizing
eventually self-clique graphs (i.e. Kn

(G) ≅Kn+1
(G) for some n):

Theorem 5.1. The problem of deciding whether a given graph is eventually self-
clique is undecidable for automatic graphs.

Proof. We shall freely use the notation and results of the previous section.
The required reduction from the halting problem, δ ∶ TMW → AG, is given by

δ(M,w) = λ(M,w) ⊠K(λ(M,w)). Note that δ(M,w) is indeed automatic: strong
products of automatic graphs are automatic and the clique graphs of our graphs in
AG0 are easily describable as automatic graphs, and the corresponding automata
can be effectively computed from those of λ(M,w).

It is well known that the clique operator distributes over the strong product,
that is, K(A ⊠ B) ≅ K(A) ⊠K(B) (the proof in [16] is valid for infinite graphs).
Also, connected graphs factorize in a unique way with respect to the strong product
(up to repetitions of trivial factors) [10]. Moreover, each connected component of
γ(M,d) contains vertices (namely those of the form 5d1) whose closed neighborhood
is isomorphic to K1,3 (the complete bipartite graph with 1 vertex in one part and
3 vertices in the other). Since K1,3 is no non-trivially factorizable, γ(M,d) is also



22 C. CEDILLO AND M.A. PIZAÑA

no non-trivially factorizable. The same can be said about K(γ(M,d)), since the
closed neighborhoods of the cliques of the form {5d1,6d1} inK(γ(M,d)) are also no
non-trivially factorizable. Hence, it follows that the (essentially) unique factoriza-
tion of Kn

(δ(M,w)), for even n, is Kn
(δ(M,w)) =Kn

(λ(M,w) ⊠K(λ(M,w))) ≅

Kn
(λ(M,w))⊠Kn+1

(λ(M,w)) ≅ γ(M,d)⊠K(γ(M,d)) for some d, with 0q0w
∗
z d.

If M halts on w, d is terminal for some d satisfying 0q0w
∗
z d. Hence, γ(M,d) =

γ0(M) and

Kn+1
(δ(M,w)) = K(Kn

(δ(M,w))) ≅K(γ(M,d) ⊠K(γ(M,d)))

≅ K(γ0(M) ⊠K(γ0(M))) ≅K(γ0(M)) ⊠K2
(γ0(M))

≅ K(γ0(M)) ⊠ γ0(M) ≅Kn
(δ(M,w))

and thus, δ(M,w) is eventually self-clique.
Reciprocally when δ(M,w) is eventually self-clique we have Kn

(δ(M,w)) ≅

Kn+1
(δ(M,w)). Assume without loss that n is even, then γ(M,d)⊠K(γ(M,d)) ≅

K(γ(M,d)) ⊠ γ(M,d1) for some d, d1 with 0q0w
∗
z d, and either d z d1 or d is a

halting configuration and d1 = d. But this is possible only when d is terminal, and
hence when M halts on w.

It follows that M halts on w if and only if δ(M,w) is eventually self-clique. �

We point out that Theorem 1.2, can be strengthened in a number of ways, by
redefining λ to reduce the class AG0. For instance, it is easy to amend the digraph
of timestamped configurations D to reduce its in-degree to at most 2 (adding extra
vertices). This allows us to claim that the clique-convergent problem is undecidable
even for automatic graphs with maximum degree at most 10. Similarly, we may
restrict the graphs in AG0 to be connected (adding extra edges between connected
components, not forming triangles), with exactly one “exit point” (connecting all
halting vertices in D with a (perhaps one-way-infinite) directed path), etc.

Thanks to Theorem 2.4, our Theorem 1.1 implies that:

Theorem 5.2. The clique-convergence property is not first-order expressible for
automatic graphs. ◻

Moreover, in view of the generalization of Theorem 2.4 which appeared in [12,
Theorem 3.2], the clique-convergence property is also not expressible when we ex-
tend the first-order logic to include several generalized quantifiers, including ∃

∞,
∃
(k,m) and ∃k−ram. Also, the Theorem remains valid when we extend the first order

logic to include the restricted second-order quantification allowed in FSO [12].
Which in turn, begs the question: Is clique-convergence first-order expressible

for finite graphs? Is it expressible in FSO?

Acknowledgments We are grateful to the anonymous reviewers for their meticu-
lous reading and many shrewd observations that made this a better paper.

References

[1] V. Bárány. Automatic Presentations of Infinite Structures. PhD thesis, RWTH
Aachen University, Budapest, Hungary, 2007.
https://logic.rwth-aachen.de/~vbarany/diss.pdf.



CLIQUE-CONVERGENCE IS UNDECIDABLE FOR AUTOMATIC GRAPHS 23

[2] A. Blumensath and E. Grädel. Finite presentations of infinite structures:
automata and interpretations. Theory Comput. Syst. 37 (2004) 641–674.
http://dx.doi.org/10.1007/s00224-004-1133-y.

[3] J.A. Bondy and U.S.R. Murty. Graph theory with applications. American
Elsevier Publishing Co., Inc., New York, 1976.

[4] G.L. Chia and P.H. Ong. On self-clique graphs all of whose cliques have equal
size. Ars Combin. 105 (2012) 435–449.

[5] F.F. Dragan. Centers of graphs and the Helly property (in Russian). PhD
thesis, Moldava State University, Chisinǎu, Moldava, 1989.

[6] F. Escalante. Über iterierte Clique-Graphen. Abh. Math. Sem. Univ. Hamburg
39 (1973) 59–68.

[7] M. Groshaus, A.L.P. Guedes and L. Montero. Almost every graph is diver-
gent under the biclique operator. Discrete Appl. Math. 201 (2016) 130–140.
http://dx.doi.org/10.1016/j.dam.2015.07.022.

[8] S.T. Hedetniemi and P.J. Slater. Line graphs of triangleless graphs and iterated
clique graphs. Springer Lecture Notes in Math. 303 (1972) 139–147.

[9] J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages,
and computation. Addison-Wesley Publishing Co., Reading, Mass., 1979.
Addison-Wesley Series in Computer Science.

[10] W. Imrich and S. Klavžar. Product graphs. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience, New York, 2000. Structure
and recognition, With a foreword by Peter Winkler.

[11] B. Khoussainov and A. Nerode. Automatic presentations of structures. In
Logic and computational complexity (Indianapolis, IN, 1994), volume 960
of Lecture Notes in Comput. Sci., pages 367–392. Springer, Berlin, 1995.
http://dx.doi.org/10.1007/3-540-60178-3_93.

[12] D. Kuske. Theories of automatic structures and their complexity. In Alge-
braic informatics, volume 5725 of Lecture Notes in Comput. Sci., pages 81–98.
Springer, Berlin, 2009. http://dx.doi.org/10.1007/978-3-642-03564-7_5.

[13] F. Larrión, V. Neumann-Lara and M.A. Pizaña. Clique divergent clockwork
graphs and partial orders. Discrete Appl. Math. 141 (2004) 195–207.

[14] F. Larrión, M.A. Pizaña and R. Villarroel-Flores. On self-clique
shoal graphs. Discrete Applied Mathematics 205 (2016) 86 – 100.
http://www.sciencedirect.com/science/article/pii/S0166218X16000275.

[15] J. Meidanis. The clique operator. Available (2001) at :
http://www.ic.unicamp.br/~meidanis/research/clique/.

[16] V. Neumann-Lara. On clique-divergent graphs. In Problèmes combinatoires
et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976),
volume 260 of Colloq. Internat. CNRS, pages 313–315. CNRS, Paris, 1978.

[17] V. Neumann-Lara. Clique divergence in graphs. In L. Lovász and V.T. Sós,
editors, Algebraic methods in graph theory, Coll. Math. Soc. János Bolyai, vol.
25 Szeged, pages 563–569. North-Holland, Amsterdam, 1981.

[18] E. Prisner. The dynamics of the line and path graph operators. Graphs and
Combinatorics 9 (1993) 335–352.

[19] E. Prisner. Graph dynamics. Longman, Harlow, 1995.
[20] M. Requardt. (Quantum) spacetime as a statistical geometry of lumps in ran-

dom networks. Classical Quantum Gravity 17 (2000) 2029–2057.



24 C. CEDILLO AND M.A. PIZAÑA

[21] M. Requardt. Space-time as an order-parameter manifold in random networks
and the emergence of physical points. In Quantum theory and symmetries
(Goslar, 1999), pages 555–561. World Sci. Publ., River Edge, NJ, 2000.

[22] M. Requardt. A geometric renormalization group in discrete quantum space-
time. J. Math. Phys. 44 (2003) 5588–5615.

[23] S. Rubin. Automata presenting structures: a survey of the finite string case.
Bull. Symbolic Logic 14 (2008) 169–209.
http://doi.org/10.2178/bsl/1208442827.

[24] J.L. Szwarcfiter. A survey on clique graphs. In B.A. Reed and C. Linhares-
Sales, editors, Recent advances in algorithms and combinatorics, volume 11 of
CMS Books Math./Ouvrages Math. SMC, pages 109–136. Springer, New York,
2003.

[25] J.L. Szwarcfiter. Recognizing clique-Helly graphs. Ars Combin. 45 (1997) 29–
32.


	1. Introduction
	2. Preliminaries
	2.1. Language theory
	2.2. Automata theory
	2.3. Automatic presentations of structures
	2.4. Turing machines
	2.5. Clique graphs

	3. Overview of the Proof of Theorem ??
	4. Proof of Theorem ??
	5. Concluding Remarks
	References

