
T
hi
s
is

an
au

th
or

ve
rs
io
n
of

a
pa

pe
r
pu

bl
ish

ed
in
:
D
M

33
9
(2
01
6)

pp
45
7–
45
9

ht
tp
:/
/d

x.
do

i.o
rg
/1
0.
10
16
/j
.d
isc

.2
01
5.
08
.0
18

ON SELF-CLIQUE GRAPHS WITH TRIANGULAR CLIQUES

F. LARRIÓN, M.A. PIZAÑA, AND R. VILLARROEL-FLORES

Abstract. A graph is an {r, s}-graph if the set of degrees of their vertices is {r, s}. A
clique of a graph is a maximal complete subgraph. The clique graph K(G) of a graph G
is the intersection graph of all its cliques. A graph G is self-clique if G is isomorphic to
K(G). We show the existence of self-clique {5, 6}-graphs whose cliques are all triangles,
thus solving a problem posed by Chia and Ong in [7].

1. Introduction.

Our graphs are simple and connected. A clique of a graph G is a maximal complete subgraph.
The clique graph of G is the intersection graph K(G) of the cliques of G, and G is self-clique
if G and K(G) are isomorphic. A graph is r-regular if every vertex has degree r; it is an
{r, s}-graph if the set of degrees of its vertices is {r, s}. Clique graphs have been applied to
study the Fixed Point Property for Posets [11] and to Loop Quantum Gravity [20–22]. The
study of self-clique graphs began in [8] and has been pursued in [1–7, 12–15] among others.
Related work may be found in [9, 10, 16–19, 23–25].

Chia and Ong [7] defined G(k), for k ≥ 2, as the class of all self-clique graphs whose cliques
all have k vertices. They classified the graphs in G(2) and started the study of G(3): They
proved that any vertex of a graph in G(3) must have a degree in {2, 3, 4, 5, 6}. They proved
that r-regular graphs in G(3) only exist when r ∈ {4, 5, 6}, classified the 4-regular graphs in
G(3) and gave families of 5- and 6-regular graphs in G(3). Chia and Ong also showed that
{r, s}-graphs in G(3) do not exist for {r, s} = {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {3, 6}, {4, 6};
gave a family of {4, 5}-graphs and an example of a {2, 6}-graph in G(3). But the existence
of {5, 6}-graphs in G(3) remained as an open problem.

Here we solve the Problem (ii) in [7] by showing the existence of self-clique {5, 6}-graphs
whose cliques are all triangles.

2. The examples

Theorem 2.1. There exist self-clique {5, 6}-graphs whose cliques are all triangles.

Proof. We provide adjacency lists for two examples in Tables 1 and 2. We also provide
drawings of both examples in Figure 1. For clarity, some vertices have been drawn twice or
even thrice: repeated occurrences of vertices are drawn with white interior. Cliques are also
numbered in bold typeface in such a way that the required isomorphisms φ : G→ K(G) are
just φ(x) = xxx. A direct inspection ends the proof. �
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Figure 1. Crab and Nebula: Two self-clique {5, 6}-graphs whose cliques are
all triangles. Vertices with the same labels in each drawing must be identified.

Vertex Neighbors Vertex Neighbors Vertex Neighbors
1 4, 7, 9, 13, 15 7 1, 3, 6, 11, 13 13 1, 5, 6, 7, 16
2 3, 8, 10, 14, 15 8 2, 4, 5, 12, 14 14 2, 5, 6, 8, 17
3 2, 7, 9, 10, 11 9 1, 3, 4, 11, 15 15 1, 2, 9, 10, 16, 17
4 1, 8, 9, 10, 12 10 2, 3, 4, 12, 15 16 5, 11, 13, 15, 17
5 8, 11, 13, 14, 16 11 3, 5, 7, 9, 16 17 6, 12, 14, 15, 16
6 7, 12, 13, 14, 17 12 4, 6, 8, 10, 17

Table 1. Adjacency list for Crab.

Vertex Neighbors Vertex Neighbors Vertex Neighbors
1 2, 5, 8, 9, 13, 15 7 2, 3, 8, 10, 14, 15 13 1, 3, 6, 8, 11, 14
2 1, 6, 7, 9, 14, 16 8 1, 4, 7, 10, 13, 16 14 2, 4, 5, 7, 11, 13
3 4, 6, 7, 9, 13, 15 9 1, 2, 3, 4, 11, 12 15 1, 3, 5, 7, 12, 16
4 3, 5, 8, 9, 14, 16 10 5, 6, 7, 8, 11, 12 16 2, 4, 6, 8, 12, 15
5 1, 4, 6, 10, 14, 15 11 9, 10, 12, 13, 14
6 2, 3, 5, 10, 13, 16 12 9, 10, 11, 15, 16

Table 2. Adjacency list for Nebula.
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