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Abstract. The clique graph K(G) of a graph G is the intersection graph of all its (maximal)
cliques. We explore the effect of operations like edge contraction, edge removal and others on the
dynamical behaviour of a graph under the iteration of the clique operator K. As a consequence
of this study, we can now prove the clique divergence of graphs for which no previously known
technique would yield the result. In particular, we prove that every clique divergent graph is a
spanning subgraph of a clique divergent graph with diameter two.

1. Introduction

Our graphs are simple, finite and non-empty. We identify induced subgraphs with their vertex
sets, so we usually write v ∈ G instead of v ∈ V (G); however, we may also use V (G) for emphasis.
A clique of a graph is a maximal complete subgraph. The clique graph K(G) of a graph G is the
intersection graph of its cliques. Iterated clique graphs are defined recursively by K0(G) = G and
Kn+1(G) = K(Kn(G)). The K-behaviour of a graph can be K-divergent (limn→∞ |Kn(G)| =∞)
or K-convergent (Kn(G) ∼= Km(G) for some n < m). In the latter case, the K-behaviour can be
K-null (i.e. Kn(G) has no edges for some n) or not. We shall also say clique divergent, clique
convergent and clique null instead of K-divergent, K-convergent and K-null respectively. Two
graphs G and H have the same K-behaviour if both are K-divergent, or both are K-convergent
but not K-null, or both are K-null. Extensive literature on clique graphs can be found in [31,36].
In recent years, there has been an increased interest in clique graphs [1–6,8,9,16–26,35] and even
applications of iterated clique graphs to Loop Quantum Gravity have been found [32–34].

Edge contraction and edge removal had received little attention (so far only in [13]) in the context
of clique graphs, perhaps because these operations may have a dramatic impact on the clique-
related properties of a graph. For instance, we know by Neumann-Lara that the octahedron is
clique divergent [10, 27], but any edge contraction/removal/addition yields a clique null graph.
Here we report the results of our study on edge contraction/removal and their opposite operations
in connection with clique behaviour. Specifically, we studied conditions guaranteeing that these
operations leave the K-behaviour of a graph invariant or at least make it change in a controlled
way (see 6.1 and 6.2).

Usually the study of clique graphs is restricted to connected graphs, since each connected com-
ponent can be analyzed independently. However, here we found it convenient not to assume our
graphs to be connected, as we shall consider operations that may disconnect a graph. It should be
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mentioned that the usual definition for a graph G to be clique null is that Kn(G) is the one-vertex
graph K1 for some n. Note that both definitions coincide in the connected case, so all that is
known about connected clique null graphs is still true under the new definition.

In §2 we quickly review the needed known notions and results. In §3 and §4 we study marked
graphs, thus providing the central techniques behind the main theorems in §5 and §6. An extended
abstract reporting part of this work without proofs was published in [11].

2. Preliminaries

Morphisms, retractions. Here, a morphism of graphs f : G → H is a vertex mapping such
that for every u, v ∈ V (G) we have u ' v ⇒ f(u) ' f(v), where “'” is the relation of adjacency-
or-equality: u ' v ⇔ u ∼ v or u = v. In particular, note that a morphism can identify adjacent
vertices. A morphism ρ : G → H is a retraction if there is another morphism (called a section)
σ : H → G satisfying that ρ ◦ σ is the identity map in H. Under these circumstances, we say that
H is a retract of G. Note that if H is a retract of G, then G contains an induced subgraph σ(H)
which is isomorphic to H.

If f : G→ H is a morphism and q ∈ K(G) is a clique of G, we always have that f(q) is a complete
subgraph of H, but possibly not a a clique (i.e. not maximal). There is, however, a natural (but
usually not unique) way to define a morphism fK : K(G) → K(H), namely selecting for each
q ∈ K(G) any fixed clique fK(q) ∈ K(H) containing f(q). Iterating this construction, we get
morphisms fKn : Kn(G) → Kn(H) for every n ≥ 2. This new morphism fK (no matter which
selections were made) has many useful properties, the first one discovered being the following
Retraction Theorem of Neumann-Lara:

Theorem 2.1. [27,31,36] If ρ : G→ H is a retraction, ρK : K(G)→ K(H) is also a retraction.
In particular, if H is a retract of G and H is K-divergent, then so is G.

Domination, dismantlings, hash arrows. A vertex v ∈ G is dominated by u ∈ G if the closed
neighbourhood of v is contained in that of u: N [v] ⊆ N [u]. Every vertex is dominated by itself, but
we say that v is dominated (not specifying u) only when v is dominated by some vertex other than
itself. In other words, v is dominated iff the open neighbourhood N(v) is a cone (with apex u).
We say that G is dismantlable to H if there is a succession of graphs G0, G1, . . . , Gr satisfying
G0 = G, Gr

∼= H and Gi+1 = Gi−vi where vi is a dominated vertex of Gi. Also, G is dismantlable
if G is dismantlable to a graph with no edges (to the one-vertex graph K1 in the connected case).
Since the relation of domination among vertices of a graph is a preorder, mutual domination is an
equivalence relation, and domination induces a partial order in the quotient set. The pared graph
of G is the subgraph P (G) induced in G by any set of representatives of the maximal equivalence
classes. For example, the pared graph of the n-path (n ≥ 3) is the (n − 2)-path. It is easy to
show that the pared graph is well defined up to an isomorphism. Escalante [10] introduced and
Prisner [30] used different, but obviously equivalent, definitions of pared graphs.

We write G #−→ H if G contains an induced subgraph H0 which is isomorphic to H and such that
every vertex v ∈ G is dominated by some (not necessarily different) vertex u ∈ H0 (see [12] for
details). For instance, we always have that G #−→ G, G #−→ P (G) and, whenever v is dominated
in G, we also have G #−→ G − v. Furthermore, G #−→ H implies H #−→ P (G). It is easy to
show that G is dismantlable to H iff G #−→ G1

#−→ G2
#−→ · · · #−→ Gr = H for some graphs Gi.

We abbreviate this last condition as G #r−→ H. Note that G #−→ H implies that H is a retract
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of G (σ is the isomorphism from H to H0 and ρ is defined, for v ∈ G, by ρ(v) = σ−1(u) where
u ∈ H0 is any vertex which dominates v). The main reason for studying this hash arrow relation
is that, with great frequency, it is much easier to prove theorems using hash arrows instead of
dismantlings, pared graphs, or removal of dominated vertices. The next two results and 5.3 are
examples of this claim.

Theorem 2.2. [12, Thm.3] If G #−→ H, then K(G) #−→ K(H).
Theorem 2.3. [12, Thm.5] If G is dismantlable to H, then G and H have the same K-behaviour.
In particular, if v is a dominated vertex of G, then G and G− v have the same K-behaviour.

Stars, normal vertices, local cutpoints. Let G be a graph. If one wanted to represent the
vertex v ∈ G by some vertex qv ∈ K(G), one might choose any clique qv of G with v ∈ qv, but
in general there is no useful way to do this. For instance, if we do the same for another vertex
w ∈ G, it can well happen (take G = P4) that v ∼ w in G, but qv 6' qw in K(G).

One fares better trying to represent v ∈ G by a vertex Qv ∈ K2(G) (i.e. a clique Qv of K(G),
or a clique of cliques Qv of G), and for this we will use stars. The star of v ∈ G is the set
v∗ = {q ∈ K(G) | v ∈ q}, which is a complete subgraph of K(G). This is not always a clique of
K(G), for instance v∗ /∈ K2(P3) if v is terminal. More generally, v∗ ⊆ u∗ iff u dominates v, so
v∗ /∈ K2(G) if v does not dominate its dominator u, but this is not the only way in which v∗ could
fail to be a clique of cliques. Now, if we choose any clique Qv of K(G) that contains v∗ and do the
same for w ∈ G, then Qv ' Qw in K2(G) whenever v ∼ w in G. We could still have Qv ∼ Qw in
K2(G) with v 6' w in G, as can be observed for G = P 2

6 . This won’t happen for normal vertices.

A vertex v in a graph G is said to be normal if v∗ is a clique of cliques. In this case we represent
v ∈ G by its star Qv = v∗ ∈ K2(G) and, if w is another normal vertex of G, we have that v∗ ' w∗

in K2(G) iff v ' w in G. That v∗ can be equal to w∗ for some adjacent normal vertices v, w ∈ G
is unavoidable, as v∗ = w∗ iff v and w are twins, i.e. N [v] = N [w] (iff v and w dominate each
other). For example, all the vertices of the complete graph Kn are normal, but they are all twins.

Our graphs are not necessarily connected, so a cutpoint is a vertex u whose removal increases
the number of connected components, i.e. the removal of u disconnects its connected component.
More generally, a local cutpoint u ∈ G is a vertex with disconnected open neighbourhood N(u),
so u is a cutpoint of N [u] and not necessarily of G.
Lemma 2.4. If u ∈ q1, q2 ∈ Q ∈ K2(G) and (q1 ∪ q2)− u is disconnected, then Q = u∗.

Proof. If Q 6= u∗, there is some q ∈ Q with u /∈ q, but q1 ∩ q 6= ∅ 6= q2 ∩ q would contradict that
(q1 ∪ q2)− u is disconnected. 2

Lemma 2.5. If u ∈ G is a local cutpoint, then u is normal.

Proof. Let v1, v2 belong to different connected components of N(u) = N [u] − u, and let q1, q2
be cliques of G containing the edges uv1, uv2. Note that (q1 ∪ q2)− u ⊆ N(u) is disconnected, and
that q1, q2 ∈ u∗. Let Q ∈ K2(G) be such that u∗ ⊆ Q. By 2.4, Q = u∗ is a clique of K(G). 2

We can produce local cutpoints as follows. Take two non-isolated vertices v 6= w in a graph H,
and suppose that dH(v, w) ≥ 4. Now let G be the graph obtained from H by identifying v and w
into a new vertex u, which is adjacent to all vertices in NH(v) ∪ NH(w). Then u ∈ G is a local
cutpoint, and u is a cutpoint of G iff either dH(v, w) =∞ or one of v, w was a cutpoint of H.

We can look at this the other way around: If u ∈ G is a local cutpoint and C1, C2, . . . , Cr are
the connected components of NG(u), by cutting through u in G we mean choosing a partition of
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{1, 2, . . . , r} into two non-empty disjoint subsets I, J , replacing u by two new vertices v, w and
making v adjacent to all vertices in ∪{Ci | i ∈ I} and w to all those in ∪{Cj | j ∈ J}. This
is similar to splitting the vertex u, only that v � w. In the resulting graph H, we have that v
and w are non-isolated vertices with dH(v, w) ≥ 4. One could say that we just described a simple
cutting, and that we can also cut totally trough u replacing it by r new vertices v1, v2, . . . , vr and
making each vi adjacent to the vertices in “its own” component Ci of NG(u). However, this total
cut can clearly be achieved by a sequence of r − 1 simple cuts, so studying simple cuts will be
enough. If the local cutpoint u ∈ G is as well a cutpoint of G, we say that a simple cut through u
disconnects G if the resulting graph H has more components than the original G. This certainly
happens if NG(u) has just two components, but for more than two it depends on the particular
simple cut. We can now observe that, for a simple cut through the local cutpoint u ∈ G, not only
the new, non-isolated vertices v, w ∈ H satisfy dH(v, w) ≥ 4, but also that dH(v, w) = ∞ iff u is
a cutpoint of G and the cut disconnects G.

We are interested in local cutpoints because their stars are often local cutpoints again. Let v ∈ G
be a local cutpoint. We know by 2.5 that v∗ ∈ K2(G). It turns out that the number of connected
components of NK2(G)(v∗) equals the number of connected components of NG(v) containing some
vertex that is not dominated by v, hence v∗ is a local cutpoint if and only if v has at least one non
dominated vertex in at least two connected components of N(v). Any shortest path in G− v from
one connected component of N(v) to another starts with a vertex which is not dominated by v.
In particular, v∗ is a local cutpoint of K2(G) if there is a cut through v that does not disconnect
G, for instance if v is not a cutpoint of G.

Distances in the second clique graph. Let Q ∈ V (K2(G)), say Q = {q1, q2, . . . , qs}. We
define the basement of Q as the set B(Q) = q1∪ q2∪ · · · ∪ qs. Thus B(Q) is always a set of vertices
of G. For instance, if v ∈ G is normal, we know that v∗ ∈ K2(G), and we clearly have that
B(v∗) = NG[v]. Basements for iterated cliques (i.e. Q ∈ V (Kn(G)) for n ≥ 1) were introduced
with a different name and terminology by Bornstein and Szwarcfiter in [7]. The one presented
here is a simplified version of that in [29]. Given two sets of vertices R, S ⊆ V (G), we define their
distance set as D(R, S) = {dG(r, s) | r ∈ R, s ∈ S}.

The following is a particular case (n = 2) of the Distance Formula of [29]:

Theorem 2.6. [29, Thm.4] Let Q1, Q2 ∈ V (K2(G)). Then:

maxD(B(Q1),B(Q2))− 2 ≤ dK2(G)(Q1, Q2) ≤ minD(B(Q1),B(Q2)) + 2.

3. Marked Graphs I: Definitions and Main Lemma

Suppose we have two disjoint graphs A and B and suppose we know their clique behaviours. If C is
obtained identifying one vertex of A with one vertex of B, can we say what is the clique behaviour
of C? It is not possible: the clique behaviour of C can depend on which particular vertices are
identified (see Example B.3). This makes it impossible, for instance, to study the clique behaviour
of a graph in terms of the clique behaviours of its blocks. We need more information, at least
we need to know which vertices are the ones to be identified, so we should think not in terms of
graphs but in terms of graphs with some specially marked vertices: those that will be identified.

A marked graph (A,X) is a graph A together with some set X ⊆ V (A) of marked vertices of A.
If X is understood, we can simply speak of “the marked graph A”, and not bother with (A,X).
We identify any graph G with the marked graph (G,∅) with no marked vertices.
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However, if (A,X) is a marked graph, there seems to be no useful way to mark vertices in K(A).
Thus, we can not define the clique operator for marked graphs, and this is problematic since we
are studying clique behaviour. What we can do is to define a new operator ξ for marked graphs
that is very closely related to K2 in the sense that ξ(G,∅) = (K2(G),∅), that the number of
marked vertices is always the same in ξn(G,X) for all n, and that we can actually study the
clique behaviour of graphs in terms of the ξ-behaviours of, say, their marked blocks, among many
other interesting properties. This section and the next are devoted to the main properties of the
operator ξ for marked graphs. It is advisable to keep in mind that our main subject is clique
behaviour, and that ξ-behaviour will only be a powerful but auxiliary tool.

Let (A,X) be a marked graph. In order to define ξ(A,X), we define first the wire-haired graph
W (A,X): for each marked vertex x ∈ X, create a new vertex x′ and attach the edge xx′ to A;
the new graph thus obtained is W (A,X). See Fig. 1, where encircled vertices are marked. We
say that hx = xx′ is the hair at x. Notice that W (A,X) does not have any marked vertices.

ξ(A,X)

z

y

x

hx x′

y′

z′

hz

hy

ξ

z

y

x

W K2

x∗

y∗

z∗

W (A,X)(A,X)

Figure 1. (A,X), W (A,X) and ξ(A,X) for X = {x, y, z}

If x ∈ A is not normal, x∗ is not a vertex of K2(A). However, if x ∈ X, x is a cutpoint ofW (A,X)
due to the hair hx, so x is normal in W (A,X) by 2.5, and thus x∗ is a vertex in K2(W (A,X)).
Then, putting X∗ = {x∗ | x ∈ X}, we can finally define ξ(A,X):

ξ(A,X) = (K2(W (A,X)), X∗).

As in the case of the clique operator we define, in a completely analogous way, iterated ξ-graphs,
ξ-divergence, ξ-convergence, ξ-nullity, ξ-behaviour, and so on. We observe that ξ(G,X) has the
same number of marked vertices as (G,X): Indeed, if x1, x2 ∈ X are distinct, hi ∈ x∗i ∈ ξ(G,X),
and no clique of cliques can contain more than one hair (all hairs are disjoint) so x∗1 6= x∗2. Also,
if x ∈ X, then x∗∗ is a marked vertex of ξ2(G,X) and x∗∗∗ is a marked vertex of ξ3(G,X), etc.
When we are not particularly interested in indicating the number of stars in the exponent, we
simply write xI instead of x∗∗···∗. For instance, we say that xI is a marked vertex of ξn(G,X) for
each x ∈ X and n ≥ 0. Since ξ(G,∅) = (K2(G),∅), it follows that for graphs without marked
vertices the notions of ξ-behaviour and K-behaviour coincide.

We found it convenient to develop intuitive notation for several simple operations on marked
graphs that otherwise would require long sentences or expressions to be specified. Our notation
is compact and affords short statements and quasi-algebraic proofs, but it also embodies visual
information about the graphical operations and marks involved, which makes it easy to read.

Consider for instance the expression “AxB ≈ x̄ABx̄” in Theorem 4.3. It means: “Given the two
disjoint marked graphs (A,X) and (B, Y ), each of which contains a vertex labeled x, the disjoint
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union C = (A ·∪B, (X ∪ {x}) ·∪(Y ∪ {x})) has the same ξ-behaviour as the marked graph obtained
from C by identifying both copies of vertex x and unmarking the resulting new vertex x”.

The idea is simple (see Fig. 2): All our graphs here are marked graphs. Subindices on any side,
as in Axy, xyBz, or Cy indicate that the corresponding graph has (different) vertices bearing those
names. A bar over a subindex, as in x̄A and Byz̄, indicates that you must mark the vertex (if
it was not already marked), and the absence of such a bar indicates that you should unmark
that vertex (if it was previously marked). A small space between marked graphs, as in xABx,
indicates disjoint union, and shared subindices, as in AxȳB, indicate gluing two disjoint graphs by
identifying the vertices bearing those names in both graphs. Also we use A[x=y] (or A[x=y]B) to
indicate that two different vertices x, y ∈ A (or x ∈ A, y ∈ B ) have been identified, so A[x=y]
means that x and y have been identified and the resulting vertex has been marked. The vertices
not indicated in subindices may be marked or not, so Ax̄ has at least one marked vertex, but may
have more.

x

x

y

xȳABx

x

[x = y]

x

y

yAx̄B

[y = x]

x

x̄A[y=x]B [x=y]ABx̄

Figure 2. Pictorial and notational representations of four marked graphs.

As suggested above, we use A ≈ B to indicate that two marked graphs have the same ξ-behaviour.
Similarly, we write A ≺ B to indicate that B has a strictly wilder behaviour than A, as in:

ξ-null ≺ ξ-convergent-but-not-ξ-null ≺ ξ-divergent.
As usual, A 4 B means “A ≺ B or A ≈ B”. Likewise, we use this linear order of behaviours to
define the maximum among the behaviours of two marked graphs, as in the first of the following
two simple observations:
Lemma 3.1. The ξ-behaviour of AB is the maximum of those of A and B. 2

Lemma 3.2. For Q ∈ ξ(Ax̄), if hx ∈ Q then Q = x∗. 2

The following lemma further clarifies the relation between the operators ξ and K2 and confirms
that marking vertices make them behave under ξ as normal vertices do under K2. Indeed, marking
a normal vertex x ∈ A makes no difference after applying the ξ operator, except that x∗ gets also
marked. Of course, isomorphism of marked graphs means that there is an isomorphism of graphs
that maps marked vertices onto marked vertices bijectively.
Lemma 3.3. If x ∈ A is normal, then ξ(Ax)x∗

∼= ξ(Ax̄).

Proof. The only difference between W (Ax) and W (Ax̄) is the pending vertex x′ and the
corresponding hair hx = xx′. Hence K(W (Ax)) and K(W (Ax̄)) differ only by an additional vertex
in K(W (Ax̄)) (and its incident edges), but by 3.2 the only clique of cliques affected by the addition
is x∗, which obviously has exactly the same adjacencies as before. The only possible difference
here could be that x∗ is always a vertex of K2(W (Ax̄)), while x∗ is a vertex of K2(W (Ax)) only
when x is normal in A. But that was precisely our hypothesis. 2

Lemma 3.4. dξ(Ax̄ȳ)(x∗, y∗) = dA(x, y).
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Proof. Clearly, the statement holds when dA(x, y) =∞ or dA(x, y) = 0. If dA(x, y) = 1, take a
clique q ⊇ xy and observe that x∗ and y∗ are different (hx ∈ x∗, hx /∈ y∗) but adjacent (q ∈ x∗∩y∗).
Otherwise, notice first that:

maxD(NW (Ax̄ȳ)[x], NW (Ax̄ȳ)[y]) = dA(x, y) + 2 and
minD(NW (Ax̄ȳ)[x], NW (Ax̄ȳ)[y]) = dA(x, y)− 2,

and then apply 2.6. 2

Corollary 3.5. If 0 < dA(x, y) <∞, Ax̄ȳ is never ξ-null. 2

The following lemma is central to this work, most of our main results are strongly based on it.

Main Lemma 3.6. If x and y are not isolated vertices of A, and dA(x, y) ≥ 4, then:
ξ(A[x=y]) ∼= ξ(Ax̄ȳ)[x∗=y∗].

We defer the proof to Appendix A; it only uses already introduced material, so it could be read
now if so wished. Note that the conclusion fails when one of x, y is isolated (take P3 ∪K1), and
when d(x, y) < 4 (take P4). Like Janus Bifrons, the lemma has two faces that look in opposite
directions. In one direction, it says that if the marked, non-isolated vertices x, y lie at distance at
least four, the same graph will be obtained either if we first identify x with y, then unmark the
resulting new vertex z ( = “[x = y]”), and finally apply ξ, or if we first apply ξ, then identify x∗
and y∗, and finally unmark the resulting vertex z∗ = [x∗ = y∗]. In short, the operations “identify-
and-unmark” and “apply ξ” commute. But by our remarks in §2 this can be read the other way
around as saying: cut through the unmarked local cutpoint z ∈ A, mark the new vertices x and
y, apply ξ, identify x∗ with y∗ and unmark the resulting vertex: all this gives the same as ξ(Az).
Thus our main lemma is, modulo judicious markings or unmarkings, a result on the relation of ξ
with identifications of vertices on the one hand, and with cutting through local cutpoints on the
other hand.

4. Marked Graphs II: Local Cutpoints and ξ-Behaviour

If the marked graph D has a local cutpoint z, cutting (simply) through z will yield another marked
graph with the same ξ-behaviour as D. We only need to know when to mark or not to mark the
two new vertices x and y. The main cases to be considered are whether z is marked or not, and
whether the cut disconnects D or not (see §2). If the local cutpoint z ∈ D is marked, both x and y
must be marked, regardless of whether the cut disconnects D or not:

Theorem 4.1. If dA(x, y) ≥ 4, then A[x=y] ≈ Ax̄ȳ.

y

x

≈
[x = y]

A[x=y] Ax̄ȳ

x
≈

[x = y]

y

A[x=y] x̄Aȳ

Proof. We prove that ξn(A[x=y]) ∼= ξn(Ax̄ȳ)[xI=yI]. Let n = 1. If x is isolated, ξ(Ax̄ȳ)[x∗=y∗]
∼=

ξ((A − x)ȳ) ∼= ξ(A[x=y]). If x, y are not isolated, ξ(A[x=y]) ∼= ξ(Ax̄ȳ)[x∗=y∗] by 3.6. Therefore
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ξ(A[x=y])[x=y]∗
∼= ξ(Ax̄ȳ)[x∗=y∗] (marking vertices paired by the previous isomorphism, see the proof

of 3.6). By 3.3, ξ(A[x=y]) ∼= ξ(A[x=y])[x=y]∗ and we get ξ(A[x=y]) ∼= ξ(Ax̄ȳ)[xI=yI] as required.

Now assume that n > 1 and that ξn−1(A[x=y]) ∼= ξn−1(Ax̄ȳ)[xI=yI]. Our distance hypothesis is
preserved by 3.4. Applying ξ to both sides we get ξn(A[x=y]) ∼= ξ(ξn−1(Ax̄ȳ)[xI=yI]), but by the
base case we know that ξ(ξn−1(Ax̄ȳ)[xI=yI]) ∼= ξ(ξn−1(Ax̄ȳ))[xI=yI]. Therefore, we have obtained
that ξn(A[x=y]) ∼= ξn(Ax̄ȳ)[xI=yI] as required. 2

We now turn to study the remaining case of an unmarked local cutpoint z ∈ D. If the cut does
not disconnect D, again both x and y must be marked after cutting to get the same ξ-behaviour:
Theorem 4.2. If 4 ≤ dA(x, y) <∞, then A[x=y] ≈ Ax̄ȳ.

y

x

≈
[x = y]

Ax̄ȳA[x=y]

Proof. Note first that x and y are not isolated. By 3.6, ξ(A[x=y]) ∼= ξ(Ax̄ȳ)[x∗=y∗]. By 3.4 we
have 4 ≤ dξ(Ax̄ȳ)(x∗, y∗) < ∞, so x∗ and y∗ are not isolated in ξ(Ax̄ȳ). Then, applying 3.6 again,
we have that ξ2(A[x=y]) ∼= ξ(ξ(Ax̄ȳ)[x∗=y∗]) ∼= ξ2(Ax̄ȳ)[x∗∗=y∗∗] with 4 ≤ dξ2(Ax̄ȳ)(x∗∗, y∗∗) < ∞ as
before. Iterating the argument we get ξn(A[x=y]) ∼= ξn(Ax̄ȳ)[xI=yI] for all n, and we are done. 2

Only the case of an unmarked cutpoint z ∈ D and a cut that disconnects D remains to be studied,
but this falls apart into two subcases: when we cut through z, its connected component cc(z,D)
breaks in two, and it can be that one of the new components is ξ-null, or not. In the latter case, as
perhaps expected, again both x and y must be marked after cutting to get the same ξ-behaviour:
Theorem 4.3. If cc(x, x̄A) and cc(x,Bx̄) are not ξ-null, then AxB ≈ x̄ABx̄.

x

x x
≈

AxB x̄ABx̄

Proof. By 3.1 we can assume that x̄A and Bx̄ are connected, i.e. cc(x, x̄A) = x̄A, cc(x,Bx̄) = Bx̄.
Since the operators W and K (hence ξ) preserve connectedness, it follows from our hypotheses
that xI is not an isolated vertex in ξn(x̄A) nor in ξn(Bx̄). As in the proof of 4.2, it follows from 3.6
that ξn(AxB) ∼= ξn(x̄A)xIξn(Bx̄) for all n, which implies the statement. 2

In the last subcase, when one of the two new components created by the cut is ξ-null, x and y
must not be marked after cutting. We will see this in Theorem 4.10, but we need first to generalize
some known results (2.1, 2.2 and 2.3) to marked graphs, thus obtaining 4.4, 4.6 and 4.7.

A marked retraction ρ : (A,X) → (B, Y ) is a graph retraction ρ : A → B admitting a section
σ : B → A (recall: ρ and σ are graph morphisms and ρ ◦ σ = 1B) such that σ(Y ) ⊆ X. In this
case, we say that (B, Y ) is a marked retract of (A,X) and that σ is a marked section. Notice that
ρ(X) ⊆ Y does not necessarily hold for a marked retraction ρ : (A,X)→ (B, Y ).
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Theorem 4.4. If (B, Y ) is a marked retract of (A,X), then ξ(B, Y ) is a marked retract of ξ(A,X).
In particular (B, Y ) 4 (A,X).
Proof. It is clear that W (B, Y ) is also a retract of W (A,X), let σ and ρ be the corresponding
section and retraction satisfying σ(hy) = hσy for every y ∈ Y . It follows by 2.1 thatK2(W (B, Y )) is
a retract of K2(W (A,X)) and the corresponding retraction and section are ρK2 and σK2 . To show
that ξ(B, Y ) is a marked retract of ξ(A,X), it only remains to be proved that σK2(Y ∗) ⊆ X∗: Take
y∗ ∈ Y ∗, since y∗ 3 hy we have σK2(y∗) 3 σK(hy) = hσy, which implies that σK2(y∗) = (σy)∗ ∈ X∗
by 3.2. Therefore, ξn(B, Y ) is a marked retract of ξn(A,X) for all n. Since then ξn(B, Y ) is
isomorphic to an induced subgraph of ξn(A,X) for all n, it follows that (B, Y ) 4 (A,X). 2

Clearly, Ax is a marked retract of Ax̄:
Theorem 4.5. For any marked graph A, Ax 4 Ax̄. 2

Example B.1 shows that the previous inequality can indeed be strict.

By (A,X) #−→ (B, Y ) (or even A
#−→ B if X, Y are understood) we mean that there exist two

morphisms ρ : A → B and σ : B → A such that ρ ◦ σ = 1B, σ(Y ) = X and x is dominated
by σρ(x) for all x ∈ A. Notice that this definition of the hash arrow relation for marked graphs
implies |X| = |Y |, and that it also implies that (B, Y ) is a marked retract of (A,X).

Theorem 4.6. If (A,X) #−→ (B, Y ), then ξ(A,X) #−→ ξ(B, Y ).

Proof. Clearly, also W (A,X) #−→ W (B, Y ). Consider the morphisms ρ : W (A,X)→ W (B, Y )
and σ : W (B, Y )→ W (A,X) of the definition of the hash arrow. As in the proof of 4.4, we obtain
that ρK2 : ξ(A,X) → ξ(B, Y ) is a marked retraction. Moreover, since σ(Y ) = X, we also have
that σK2(Y ∗) = X∗. By 2.2, Q is dominated by σK2ρK2(Q) for all Q ∈ ξ(A,X). 2

Theorem 4.7. If (A,X) #−→ (B, Y ), then (A,X) ≈ (B, Y ).
Proof. Since σρ(x) dominates x for all x ∈ A, it follows that both belong to the same connected
component of A. Therefore ρ induces a bijection between the connected components of A and
those of B, and by 3.1 we may assume without loss that A and B are connected. Since for |Y | = 0
the statement is just a particular case of 2.3, we may assume |Y | ≥ 1.

Assume first that B = (B, Y ) is not ξ-null. By 4.4 A = (A,X) is not ξ-null. We shall prove the
statement by induction on |Y | ≥ 1. Take y ∈ Y , x = σ(y) ∈ X and let C be a cycle of length at
least 4 without marked vertices. Since Cz̄ is ξ-convergent but not ξ-null (indeed ξ(Cz̄) ∼= Cz̄), it
follows by 3.1 and 4.3 that x̄A ≈ x̄ACx̄ ≈ AxC and ȳB ≈ ȳB Cȳ ≈ ByC. Since AxC

#−→ ByC, we
conclude this case by the inductive hypothesis, as ByC has fewer marked vertices than B.

Finally, assume (B, Y ) to be ξ-null. For some n, since B is connected, ξn(B, Y ) is a graph on
a single vertex yI. By 4.6 we have ξn(A,X) #−→ ξn(B, Y ). Now every vertex v ∈ ξn(A,X) is
dominated by σρ(v) = σ(yI) = xI, so ξn(A,X) is a cone with apex xI, and only xI is marked in
ξn(A,X). Then W (ξn(A,X)) is still a cone with apex xI and, since every clique of W (ξn(A,X))
contains xI, ξn+1(A,X) = (K2(W (ξn(A,X))), XI) has only one vertex. 2

Lemma 4.8. ξn(Ax̄)xI

#n−→ ξn(Ax).

Proof. Assume n = 1. Let E be an edge. Note first that ξ(AxE) = ξ(Ax̄)x∗ and AxE
#−→ Ax,

then apply 4.6. Now assume n > 1. By the inductive hypothesis, ξn−1(Ax̄)xI

#n−1−→ ξn−1(Ax). Using
the base case and 4.6, we have that ξn(Ax̄)xI = ξ(ξn−1(Ax̄))xI

#−→ ξ(ξn−1(Ax̄)xI) #n−1−→ ξn(Ax). 2
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Lemma 4.9. Ax ≈ ξn(Ax̄)xI

Proof. Clearly Ax ≈ ξn(Ax). Now use 4.8 and 4.7. 2

Theorem 4.10. If either cc(x, x̄A) or cc(x,Bx̄) is ξ-null, then AxB ≈ xABx.

x

x x
≈

AxB xABx

Proof. Without loss: A, B are connected (by 3.1) and ξn(x̄A) ∼= K1 is trivial, but neither
ξn−1(x̄A) or ξn−1(Bx̄) are trivial. By 3.6 and 4.9, ξn(AxB) ∼= ξn(x̄A)xIξn(Bx̄) = ξn(Bx̄)xI ≈ Bx. 2

Theorems 4.1, 4.2, 4.3 and 4.10 motivate us to define a persistent vertex as a local cutpoint z ∈ D
such that either z is a marked vertex of D, or z is not a cutpoint of D, or Dz = AzB and none of
the connected components containing z in z̄A and Bz̄ is ξ-null. Also, we define "D as the marked
graph obtained from D by cutting trough all the local cutpoints (totally, or simply but including
those arising at previous cuttings) and marking all the vertices which come from a persistent
vertex. Then we have already the following result:

Theorem 4.11. D ≈ "D for any marked graph D. 2

5. The Problem of the Kissing Nullities

So far we we are unable to tell the K-behaviour of GvH when we know G and H to be K-null.
Specifically, we have been trying to solve the following problem since at least 2000:

Problem 5.1. Are there K-null graphs G,H such that GvH is not K-null?

The corresponding question of whether there are K-convergent graphs G,H such that GvH is
K-divergent is affirmatively answered in Example B.2. The following characterization is not
completely satisfactory because (assuming AxB not to have any marked vertices) we do not know
whether “Ax̄ is ξ-null” is equivalent to “Ax is ξ-null” or not, hence it could be that we are asking
for the disjunction of two equivalent conditions.

Theorem 5.2. AxB is ξ-null if and only if Ax̄ and Bx are ξ-null OR Ax and Bx̄ are ξ-null.

Proof. By 3.1 we can assume that AxB is connected. If none of x̄A or Bx̄ is ξ-null, then
by 4.3 AxB ≈ x̄ABx̄, which is not ξ-null by 3.1. Otherwise, assume without loss that x̄A is ξ-null.
By 4.5, xA is also ξ-null. Then, we have AxB ≈ xABx ≈ Bx by 4.10 and 3.1. 2

Theorem 5.3. If G #n−→ F and G #m−→ H then there is a graph S such that F #m−→ S and H #n−→ S.
In particular, if G is dismantlable and G #n−→ H then H is also dismantlable.
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#m−1

S1

H1

HF

X

S

Y

#

#

G

#m−1

#m−1

#n−1

F1

#n−1

#n−1

#

#

#
#

Proof. The result clearly holds if n = 0 or m = 0. By hypothesis we have graphs F1 and H1

with G #−→ F1
#n−1−→ F and G #−→ H1

#m−1−→ H. We use induction on n+m. The existence of S1 is
just the base case, and for it one can take S1 = P (G). The existence first of X, Y and then of S
in the diagram is guaranteed by the inductive hypothesis. 2

A dismantlable graph G is uniquely startable at v if v is the only dominated vertex of G.
An example of a dismantlable, uniquely startable graph is drawn in Fig. 3.

Figure 3. Minimum dismantlable, uniquely startable graph.

The following result summarizes our best findings so far in our attempt to solve Problem 5.1.

Theorem 5.4. The following conditions are equivalent:

(1) There are K-null graphs G,H such that GvH is not K-null.
(2) There is a K-null graph G such that GvG is not K-null.
(3) There is a K-null graph Gv such that Gv̄ is not ξ-null.
(4) There is a K-null graph Hw which is dismantlable, uniquely

startable at w, and such that Hw̄ is not ξ-null.

Proof. We shall prove (1)⇒ (2)⇒ (3)⇒ (4). The converse implications are all trivial.

(1)⇒ (2): By 5.2, none of v̄G or Hv̄ is ξ-null, hence GvG is not ξ-null also by 5.2.
(2)⇒ (3): Use 5.2.
(3)⇒ (4): Let n be such that ξn(Gv) = K2n(G) ∼= K1. Let H be obtained from ξn(Gv̄)vI by
successively removing all the dominated vertices save for vertex vI. Put w = vI ∈ V (H). Then for
some m we have ξn(Gv̄)vI

#m−→ Hw. It follows that Hw is K-null because of 4.9 and 4.7. Since we
also have ξn(Gv̄)

#m−→ Hw̄ and ξn(Gv̄) is not ξ-null, it follows by 4.7 that Hw̄ is not ξ-null. By 4.8,
ξn(Gv̄)vI

#n−→ ξn(Gv) ∼= K1, and since we also have ξn(Gv̄)vI

#m−→ Hw, it follows by 5.3 that Hy is
dismantlable. By construction, Hw can not contain any dominated vertex other than w. 2
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6. Some Applications

In this section, except within proofs, all our graphs are graphs without marked vertices. As it is
usual in the literature, given a graph G and an edge uv, we denote contraction and removal of
that edge by G/uv and G\uv respectively. A local bridge uv ∈ E(G) is a bridge in the subgraph
of G induced by N [u] ∪N [v]; this is equivalent to asking that dG\uv(u, v) ≥ 4.

Theorem 6.1. Let G be a graph and let uv ∈ E(G) be a local bridge. Then G ≈ G/uv.

Proof. Let Euv ∼= K2 be an edge. Assume first that 4 ≤ dG\uv(u, v) < ∞. Let H = G\uv.
By 4.2 we have H[u=v] ≈ Hūv̄. By 3.5, Hūv̄ is not ξ-null, but Eūv̄ is ξ-convergent, hence by 3.1 we
obtain Hūv̄ ≈ ūv̄H Eūv̄. Now 3.5 and 4.3 give ūv̄H Eūv̄ ≈ v̄HuEv̄, and 4.2 implies v̄HuEv̄ ≈ HuvE.
Hence H[u=v] ≈ HuvE, which means the same as G ≈ G/uv.

Now assume dG\uv(u, v) =∞, say G = HuEvF . Assume also: cc(u,Hū) is ξ-null. Since Ev̄ and uvE
are ξ-null we have by 4.10 and 3.1 that G ≈ uH (EvF )u ≈ uH (vE Fv)u ≈ uH (uvE Fv) ≈ uH Fv.
Applying 4.10 again we get G ≈ uH Fv ≈ H[u=v]F = G/uv. On the other hand, if none of cc(u,Hū)
or cc(v, v̄F ) is ξ-null, we can apply 4.3 twice to get G = HuEvF ≈ ūH (EvF )ū ≈ ūH (ūv̄E Fv̄).
Since ūv̄E is ξ-convergent, by 3.1 and 4.3 we get G ≈ ūH (ūv̄E Fv̄) ≈ ūH Fv̄ ≈ H[u=v]F = G/uv. 2

By Example B.4, removing a local bridge can alter the K-behaviour. We can only show that it
does not worsen. The hypothesis, however, is weaker: dG\uv(u, v) ≥ 3 iff uv lies in no triangle.

Theorem 6.2. Let G be a graph and let uv ∈ E(G) be in no triangle. Then G\uv 4 G.

Proof. Suppose first 3 ≤ dG\uv(u, v) < ∞. Let H = G\uv. Now apply 3.1, 4.5, 4.3 (with 3.5)
and 4.2 to obtain uvH ≈ uvH Euv 4 ūv̄H Eūv̄ ≈ ūHvEū ≈ HuvE = G. Thus G\uv 4 G in this case.

Suppose now dG\uv(u, v) = ∞, and let G = HuEvF . If none of cc(u,Hū) and cc(v, v̄F ) is ξ-null,
apply 4.3 twice, 3.1 and then 4.5, otherwise apply 4.10 twice, 3.1 and then 4.10 again. 2

The following is a corollary of Theorem 6.2:

Theorem 6.3. Each clique divergent graph is a spanning
subgraph of some clique divergent graph of diameter two. 2

The behaviour of many new graphs can be determined thanks to the techniques developed in this
paper; for instance, most of the diameter two graphs obtained in 6.3. For a particular example,
take the icosahedron plus an edge between two antipodal vertices. The new edge shortens the
distance between them, invalidating the techniques used to determine that the icosahedron is
clique divergent in [28] or [16]. However, using the clique divergence of the icosahedron and 6.2,
we get that the icosahedron plus that edge (or all six of them) is indeed clique divergent.

Theorem 6.4. G is K-null if, and only if, G does not have any
persistent vertex and every connected component of "G is K-null.

Proof. Without loss assume G to be connected. We already know by 4.11 that G ≈ "G, hence
we only need to show that, if G is K-null, it does not have persistent vertices. Suppose G has a
persistent vertex w. If w is a local cutpoint such that Gw = H[u=v] with 4 ≤ dH(u, v) < ∞, we
apply 4.2 and 3.5 to get a contradiction. Otherwise we must have Gw = HwF , where cc(w, w̄H)
and cc(w,Fw̄) are not ξ-null, but then by 4.3 we get that Gw ≈ w̄H Fw̄, a contradiction by 3.1. 2

We define 3G as the graph obtained from G after cutting (totally) through all its local cutpoints
and attaching a 4-cycle to each of the vertices which come from a persistent vertex of G.
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Theorem 6.5. G ≈ 3G

Proof. If G does not have any persistent vertex, clearly "G ∼= 3G, and we know by 4.11 that
G ≈ "G. On the other hand, if G has persistent vertices, then "G has some (say m) marked
vertices. Let Cz̄ be the 4-cycle with one marked vertex. By 6.4 G is not K-null, hence by 4.11 "G
is also not ξ-null and therefore, by 3.1, "G has the same behaviour as the disjoint union of "G
and m disjoint copies of Cz̄, but this last graph is exactly "3G, which has the same behaviour
as 3G by 4.11. Hence G ≈ "G ≈ "3G ≈ 3G. 2

Appendix A. Proof of Main Lemma 3.6

Let x and y be non-isolated vertices of the marked graph A, and assume that dA(x, y) ≥ 4.
We need to prove that ξ(A[x=y]) ∼= ξ(Ax̄ȳ)[x∗=y∗]. In order to do this, we shall define a morphism
f : W (Ax̄ȳ) → W (A[x=y]) such that the induced morphism at the level of cliques of cliques
fK2 : K2(W (Ax̄ȳ))→ K2(W (A[x=y])) has the following properties:

(1) fK2 is vertex-surjective.
(2) fK2 is edge-surjective.
(3) fK2(Q1) = fK2(Q2) iff either Q1 = Q2 or {Q1, Q2} = {x∗, y∗}.
(4) fK2 sends marked vertices of ξ(Ax̄ȳ)[x∗=y∗] onto marked vertices of ξ(A[x=y]).

Properties (1) and (2) say thatK2(W (A[x=y])) is a quotient graph ofK2(W (Ax̄ȳ)) and Property (3)
tells us that the only identification involved in this quotient is [x∗ = y∗], so therefore we have that
K2(W (A[x=y])) ∼= K2(W (Ax̄ȳ))[x∗=y∗]. Property (4) says that this isomorphism is an isomorphism
of marked graphs, which is what we had to prove. Let us start then by defining f :

Please refer to Fig. 4. Since x and y are not isolated in A, we can fix vertices x1, y1 ∈ A such
that xx1 and yy1 are edges of A. Let f : W (Ax̄ȳ) → W (A[x=y]) be the morphism defined by
f(x) = f(y) = [x = y], f(x′) = y1, f(y′) = x1 and f(w) = w for w /∈ {x, y, x′, y′}. In what follows
we shall rename W (Ax̄ȳ) = W , W (A[x=y]) = W ′ and [x = y] = z.

f
x′ y′

x

x1

qx
qy

y

hx hy

z

y1

x1 y1
px py

W = W (Ax̄ȳ) W ′ = W (A[x=y])

Figure 4. The mapping f : W (Ax̄ȳ)→ W (A[x=y]).

Before proving (1)-(4), we shall analyze some properties of f , fK and fK2 :

(5) The restriction f| : W − {x, y, x′, y′} →W ′− z is an isomorphism:
Obvious.
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(6) f(q) = fK(q) for q ∈K(W ), q 6= hx, hy:
Assume first that z /∈ f(q). It follows that x, y, x′, y′ /∈ q. If f(q) is not already a clique
of W ′ it follows by (5) that f(q) + z is a clique of W ′, but that means that for every vertex
w ∈ q, we have that either w ∼ x or w ∼ y. By the distance hypothesis, we can not have
that w ∼ x and w′ ∼ y for some w,w′ ∈ q. Then it follows that either q + x or q + y is a
complete (i.e. a complete subgraph) properly containing q, which is a contradiction.

Now, if z ∈ f(q) we have that either x ∈ q or y ∈ q (but not both). Assume without
loss that x ∈ q. If f(q) + w is a bigger complete, it follows by (5) that w is adjacent
(in W ) to every vertex in q − x. Since q is a clique, we know that w � x, but then w ∼ y,
contradicting our distance hypothesis.

(7) fK is vertex-surjective (even excluding hx, hy from the domain):
Let p be a clique of W ′. If z /∈ p, p is also a clique of W and we have fK(p) = f(p) = p
by (6). Now, if z ∈ p, then p − z is a complete of W and either x or y (but not both) is
adjacent to every vertex in p−z. It follows that either fK(p−z+x) = p or fK(p−z+y) = p.

(8) The only cliques of W ′ with more than one preimage are the following two:
py := fK(hx) and px := fK(hy):
Let py := fK(hx) and px := fK(hy). Let qx and qy be such that fK(qx) = px and fK(qy) = py
as constructed in (7). We have that x ∈ qx 6= hy and y ∈ qy 6= hx but fK(qx) = fK(hy) and
fK(qy) = fK(hx). Now, let q1, q2 ∈ K(W ), q1, q2 6= hx, hy with fK(q1) = fK(q2). By (6),
f(q1) = fK(q1) = fK(q2) = f(q2), but then it follows that q1−{x, y} = q2−{x, y} and, by
the distance hypothesis, it follows that q1 = q2.

(9) For q1, q2 ∈K(W ), q1, q2 6= hx, hy we have that fK(q1) ' fK(q2) if, and only if,
either q1 ' q2 or (x ∈ q1 and y ∈ q2) or (y ∈ q1 and x ∈ q2):
Obvious.

(10) fK2(Q) = fK(Q) for all Q ∈K2(W ), Q 6= x∗, y∗:
Let Q = {q1, q2, . . . , qr}, Q 6= x∗, y∗. By 3.2 we have that qi 6= hx, hy for all i. Now
let pi = fK(qi), P = {p1, p2, . . . , pr}. Obviously P is a complete. Assume there is a
p0 ∈ K(W ′), p0 6= p1, p2, . . . , pr such that p0 ∼ p1, p2, . . . , pr and let q0 ∈ K(W ) be such
that fK(q0) = p0 as constructed in (7). Then by (9) q0 ∼ q1, q2, . . . , qr (for otherwise, say,
x ∈ q0, y ∈ qi for some i, but that implies y ∈ qj for all j, and therefore Q = y∗). Hence,
Q+ q0 would be a complete properly containing the clique Q, a contradiction.

(11) fK2(x∗) = fK2(y∗) = z∗:
If Q = x∗, then qx, hx ∈ Q. Hence, fK(qx), fK(hx) ∈ fK2(Q) implies that px, py ∈ fK2Q,
but (px ∪ py) − z is disconnected and then, by 2.4, fK2(x∗) = z∗. Obviously, the same
happens when Q = y∗.

Now we can proceed to the proof of (1)-(4).

Proof of (1): Let P ∈ K2(W ′), we shall show that there is some Q ∈ K2(W ) such that fK2(Q) = P .
If P = {p1, p2, . . . , pr}, let qi ∈ f−1

K (pi) as constructed in (7). It follows by (9) that either
Q = {q1, q2, . . . , qr} is a complete (hence a clique, and by (10) fK2(Q) = P and we are done),
or there are some i, j with x ∈ qi and y ∈ qj, but then (pi ∪ pj) − z = (fK(qi) ∪ fK(qj)) − z is
disconnected which implies by 2.4 that P = z∗ and we are done by (11).

Proof of (2): Let P1, P2 ∈ K2(W ′), P1 ∼ P2, and let p ∈ P1 ∩ P2. Assume first that none of
P1, P2 is z∗; then their preimages Q1, Q2 as constructed in the proof of (1) will contain a clique
q ∈ f−1

K (p), hence Q1 ∼ Q2. Now assume P1 = z∗ 6= P2. Let Q2 be as in the previous case. Let
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p ∈ z∗ ∩ P2, then z ∈ p ∈ P2. Now taking q ∈ f−1
K (p) ∩ Q2 we have that either x ∈ q or y ∈ q,

hence either Q1 = x∗ or Q1 = y∗ has a nonempty intersection with Q2.

Proof of (3): Immediate from (10) and (11).

Proof of (4): Obvious. 2

Appendix B. Examples & Counterexamples

Example B.1. There are (connected, unmarked) graphs G such that Gv ≺ Gv̄.

Proof. (Sketch) The graph R4 in Fig. 5 (identify vertices bearing equal labels) is an example of
a clockwork graph. Clockwork graphs were introduced in [14] and further studied in [15]. In [15],
it is shown that the clique graph of any clockwork graph can be obtained by applying two simple
operations called tick and tock: tick removes some vertices and tock adds some vertices. So, for
a clockwork graph G, we have: K(G) ∼= tock ◦ tick(G). Let Gv=R4. Then Gv is ξ-convergent
(indeed ξ(Gv) ∼= Gv) but a straightforward verification using clockwork graph techniques shows
that ξ(tockn(G), {vI}) ∼= (tockn+1(G), {vI}), which implies that Gv̄ is ξ-divergent. 2
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Figure 5. A K-convergent (but not K-null) graph R4. However R4̄ is ξ-divergent,
while the unmarked graphs R[4=14], R + e and R4C are K-divergent, where e is the
edge joining the vertices 4 and 14, and C is a 4-cycle.

Example B.2. There are K-convergent graphs G,H such that GvH is K-divergent.

Proof. Take Gv = R4 (see Fig. 5) and let Hv = C4 be a 4-cycle. Then both G and H are
K-convergent, but by 4.3 GvH ≈ v̄GHv̄ and we know that Gv̄ = R4̄ is divergent by Example B.1,
hence GvH is K-divergent by 3.1. 2

Example B.3. There are graphs G, H such that such that the clique behaviour of GvH depends
on the chosen vertex v.

Proof. We know by Example B.2 that R4C is clique divergent, but a direct calculation shows
that R1C is clique convergent. 2

Example B.4. There are graphs G such that G\uv ≺ G and uv is a local bridge of G.

Proof. Add the edge uv (u = 4 and v = 14) to the graph R4 in Fig. 5 to get G = R+ uv. Then
we know that G\uv = R is K-convergent, but G is K-divergent by 4.2, 4.3, 3.1, 4.5 and B.1. 2

Example B.5. There are connected graphs Guv such that Guv ≺ G[u=v].

Proof. As before take Guv = R4,14. Then G itself is clique convergent, but G[u=v] is clique
divergent by 4.2, 4.5 and B.1. 2
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