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Abstract

Given a digraph D, a diclique is a maximal pair of vertex sets (X,Y ) satisfying

x ∈ X, y ∈ Y =⇒ x → y. The diclique digraph of D,
−→
K(D), has the dicliques of D

as vertices two of them being adjacent, (X,Y )→ (X ′, Y ′), if and only if Y ∩X ′ 6= ∅.

Iterated diclique digraphs are defined by
−→
K0(D) = D and

−→
Kn(D) =

−→
K(
−→
Kn−1(D)).

Here we study the diclique operator
−→
K from the perspective of graph dynamics [21] and

hence we are interested in
−→
K -divergence (|

−→
Kn(D)| → ∞),

−→
K -convergence (

−→
Kn(D) ∼=−→

Km(D) for some n < m),
−→
K -invariance (

−→
K(D) ∼= D) and similar properties. In

particular, we provide here the first examples of simple digraphs which are
−→
K -divergent.

1 Introduction

Unless otherwise stated, our digraphs are simple, i.e. without loops or symmetric edges.
We mostly use standard terminology here [1, 21], but for the reader convenience, we make
explicit several definitions and terminology conventions in the following section.

Graph dynamics [21] is concerned with a given graph (or digraph) operator Φ and the
sequence of graphs resulting from applying it iteratively to graphs: G,Φ(G),Φ2(G), . . ..
Many natural questions appear in this context like, whose graphs are Φ-invariant, which
graphs belong to the image of Φ, which ones are Φ-divergent, which classes of graphs are
Φ-invariant and so on. Several graph operators have been extensively studied in this way,
including the clique graph operator [2, 13, 15, 17–19, 26, 27] and the biclique graph operator
[8–12]. Other operators concerning bicliques as the strong-factor, the weak-factor and the
clean-factor (a refinement of the weak-factor) operators have been studied in [3, 4].

The diclique digraph and the diclique operator were introduced by E. Prisner inspired by
the clique graph operator [21]. In the beginning, this operator was defined as the biclique
digraph for general digraphs with possible loops and symmetric (but not multiple) arcs (see
Definition 19.23 of Prisner’s book [21]). The diclique operator have been investigated where
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loops where implicitly [5, 28] or explicitly [6] considered. In the case of simple digraphs (no
loops, no symmetric arcs), as is our case, the definition of the diclique operator excludes
intersections of the parts of a diclique (see Section 2 for the details).

Graph dynamics have been applied to Loop Quantum Gravity [22–25] whereas dicliques
have been applied, for example, in general systems theory to represent binary relations [14],
in economic based decision-making [7] and in search techniques to find internally densely
connected groups of nodes in directed networks [20].

In this paper, we study the dynamics of the diclique operator
−→
K (detailed definitions will

be given in the next section). Concerning the diclique operator, B. Zelinka [28] exhibited a

self-diclique digraph that is not a directed cycle (the circulant
−→
C 6(1, 2)). This result partially

answered a question posed by Prisner (see [21], open problem 39, p.207) on the existence of

a
−→
K -periodic strongly connected digraphs. In [5], an infinite family of self-diclique circulant

digraphs was exhibited generalizing the example given by Zelinka. A characterization of the
self-diclique circulant digraphs and an infinite family of non-circulant self-diclique digraphs
were provided in [6].

Among other results, in Sections 3 and 4, we characterize the dicliques of a digraph

(Theorem 4), define a pair of canonical morphisms α, β : D →
−→
K (D) (Theorem 6) and show

that the diclique operator is surjective for the class of simple digraphs (Corollary 9). We

also study the
−→
K -preserved properties like transitivity, strong connectivity, girth, acyclicity

and also the digraph properties that vary in a controlled way under
−→
K such as diameter and

height (Theorems 11 and 13). We present numerous examples to show that many of our
theorems cannot be improved.

In Section 5, we present an infinite family of examples of
−→
K -divergent digraphs. These

examples are the first ones since Prisner [21] (1995). Also they are the first ones which are

− simple,

− not strongly connected and

− of linear growth.

Observe that Prisner’s examples grow exponentially at each step, and hence they grow super-

exponentially. In the last section, we show that the diclique operator
−→
K distributes over the

categorical (or tensor) product (Theorem 19) and that there exist
−→
K -divergent digraphs with

polynomial growth rate (Theorem 21).

2 Preliminaries and terminology

As usual, given a digraph D, V (D) and A(D) denote the vertex set and the arc set of
D, respectively. When the digraph of reference is clear, we use V and A instead of V (D)
and A(D) respectively. The expression “u → v” denotes both, the arc “(u, v)” and the
proposition “(u, v) is an arc (of the considered digraph)”.

Let X and Y be nonempty subsets of V (D). The pair (X, Y ) is a disimplex of D if for
every x ∈ X and every y ∈ Y , (x, y) ∈ A(D). Note that if (X, Y ) is a disimplex, then we
have that X ∩ Y = ∅ since otherwise, we would have some z ∈ X ∩ Y and hence a loop
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z → z at z, contrary to our assumption that D is simple. For disimplices (X, Y ) and (Z,W )
of D, we say that (X, Y ) is included in (Z,W ), denoted by (X, Y ) � (Z,W ), if and only
if X ⊆ Z and Y ⊆ W . Clearly, this is a partial order relation among disimplices of V (D).
Note that every arc u→ v = (u, v) determines a disimplex (X, Y ) = ({u}, {v}).

A disimplex (X, Y ) is a diclique of D if it is maximal with respect to the order relation �.
Note that (the disimplex determined by) any arc is included in some diclique. We emphasize
that by our definitions, we must have X 6= ∅ 6= Y and X ∩ Y = ∅. The set of dicliques of
D is denoted D(D).

The diclique digraph of D, denoted by
−→
K (D), is the digraph whose vertex set is the set

of dicliques of D, D(D), and (X, Y )→ (Z,W ) is an arc of
−→
K (D) if and only if Y ∩ Z 6= ∅.

We say that
−→
K is the diclique operator. Observe that if A(D) = ∅, there are no dicliques in

D. In this case,
−→
K (D) is the empty digraph, the digraph with no vertices and no arcs. As

usual, we will denote the empty digraph by ∅. Hence, in this case, we write
−→
K (D) = ∅.

Obviously, we also have
−→
K (∅) = ∅. By convention we will assume that the empty digraph

is simple and acyclic.
From the general theory of graph operators [21], we recall the following definitions: A

digraph is
−→
K -divergent if limn→∞ |

−→
Kn(D)| = ∞. Otherwise, it is

−→
K -convergent, which

necessarily means
−→
K t(D) ∼=

−→
K t+p(D) for some t ≥ 0, p ≥ 1. When t and p are the

smallest possible integers satisfying that, we say that t is the transition index of D (under
−→
K ) and p is the period of D (under

−→
K ). In this case, we say that D converges to the set

{
−→
K t(D),

−→
K t+1(D), . . . ,

−→
K t+p−1(D)}. If p = 1 we simply say that D converges to

−→
K t(D).

When D converges to ∅, D is said to be
−→
K -mortal. When t = 0 we say that D is periodic

of period p and when t = 0 and p = 1, we say that D is self-diclique or
−→
K -invariant.

For instance, let D = TT3 be a digraph such that V (D) = {1, 2, 3} and A(D) =
{(1, 2), (1, 3), (2, 3)}, (see Figure 1). The disimplex ({1}, {2}) of D is not a diclique, since
({1}, {2}) � ({1}, {2, 3}) and

D(D) = {({1}, {2, 3}), ({1, 2}, {3})}.

Therefore,
−→
K (D) is isomorphic to an arc.

1

2 3
({1}, {2, 3}) ({1, 2}, {3})−→

K

Figure 1: TT3 and its diclique digraph.

For every x ∈ V we define N+(x) = {y ∈ V : (x, y) ∈ A} and N−(x) = {y ∈ V : (y, x) ∈
A} to be the out- and the in-neighborhood of x, respectively. The height of a digraph D is
the length of a directed path of maximum length in D and it is denoted by h(D). Recall that
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if D has an (x, y)-walk W , then D contains an (x, y)-path P such that A(P ) ⊆ A(W ). The
girth of a digraph D, denoted by −→g (D), is the length of a shortest directed cycle contained
in the digraph. If D is acyclic, then −→g (D) =∞. Recall that the empty graph ∅ is acyclic by
convention and therefore −→g (∅) =∞. Since we only consider simple digraphs, −→g (D) ≥ 3.

We denote by dD(x, y) the distance from a vertex x to a vertex y of D. If y is reachable
from x, then dD(x, y) is finite, otherwise dD(x, y) =∞. Recall that the distance from a set
X to a set Y of vertices in D is defined by

dD(X, Y ) = max{dD(x, y) : x ∈ X, y ∈ Y }

and the diameter of D is diam(D) = dD(V, V ). Clearly, D has finite diameter if and only if
D is strongly connected. Moreover, diam(∅) =∞.

A digraph D is transitive if (x, y), (y, z) ∈ A(D) implies (x, z) ∈ A(D). D is acyclic
if there are no directed cycles in D. A tournament on n vertices is an orientation of the
complete graph Kn. Notice that a tournament is transitive if and only if it is acyclic.

As we previously mentioned, the clique operator of a graph G inspired the definition of
the diclique operator. Besides, the biclique operator resembles the diclique operator since
dicliques can be considered as directed bicliques (the orientation goes from one part to the
other in bipartition). We explore the similarities and the differences between the three
operators throughout the paper.

Let G = (V,E) be a graph. For every x ∈ V , the sets N(x) and N [x] = N(x) ∪ {x} are
the neighborhood and the closed neighborhood of x, respectively. A clique of a graph G is a
maximal complete subgraph, which we often identify with its corresponding vertex set. The
clique graph of G is the intersection graph K(G) of the cliques of G, that is, V (K(G)) = C(G)
and X, Y ∈ C(G) are adjacent if and only if X ∩ Y 6= ∅, where C(G) is the set of cliques of
G. A biclique of a graph G is a maximal induced complete bipartite subgraph. The biclique
graph of G is the intersection graph KB(G) of the bicliques of G.

3 Dicliques and simple digraphs

For the following theorem, assume that the digraph D may contain loops or symmetric arcs.
When we have loops in a digraph, the definition of dicliques allows that a diclique (X, Y )
may have intersecting parts X ∩ Y 6= ∅. We prove that the property of being a simple

digraph is invariant under
−→
K :

Theorem 1. D is a simple digraph if, and only if,
−→
K (D) is a simple digraph.

Proof. Suppose that
−→
K (D) has a loop at a diclique (X, Y ) of D, that is,

−→
K (D) has an arc

of the form (X, Y )→ (X, Y ). Then Y ∩X 6= ∅. Take z ∈ Y ∩X, since (X, Y ) is a diclique,
we have z → z and hence a loop in D, contrary to our hypothesis.

On the other hand, if we had a symmetric arc (X, Y ) � (W,Z) in
−→
K (D), then there

exist y ∈ Y ∩W and x ∈ Z ∩X. Since (X, Y ) and (W,Z) are dicliques, we have x→ y → x.
Then we either have that x 6= y, which implies a symmetric arc x� y in D, or we have that
x = y, which implies a loop at x in D. Both possibilities are contrary to our hypothesis.
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If D is not simple, then there is either a loop z → z or a symmetric edge x � y. In
the first case, the arc z → z is included in some diclique (Z,Z ′) and since z ∈ Z ∩ Z ′, we

have a loop (Z,Z ′)→ (Z,Z ′) in
−→
K (D). In the second case, the arcs x→ y and y → x must

be included in some dicliques (X, Y ) and (Y ′, X ′), since x ∈ X ′ ∩ X and y ∈ Y ∩ Y ′ we
have that there is either a loop at (X, Y ) (whenever (X, Y ) = (Y ′, X ′)) or a symmetric edge

(X, Y )� (Y ′, X ′) in
−→
K (D).

The symbol
←−
D denotes the converse of D (

←−
D is obtained from D by reversing all the

arcs). Note that
←−←−
D = D. We prove that the operations of reversing arcs and the diclique

operator commute:

Theorem 2. Let D be a digraph. Then
−→
K (
←−
D) =

←−−−−→
K (D).

Proof. From the definition of the converse, (A,B) ∈ D(D) if and only if (B,A) ∈ D(
←−
D).

Therefore, there is a bijection between V (
−→
K (D)) and V (

−→
K (
←−
D)) = V (

←−−−−−→
K (
←−
D)). Moreover,

notice that (A,B) → (A′, B′) is an arc of
−→
K (D) if and only if B ∩ A′ 6= ∅, if and only if

(B′, A′) → (B,A) is an arc of
−→
K (
←−
D), if and only if (A,B) → (A′, B′) is an arc of

←−−−−−→
K (
←−
D).

Therefore
−→
K (D) ∼=

←−−−−−→
K (
←−
D), equivalently,

−→
K (
←−
D) ∼=

←−−−−→
K (D).

Cliques of graphs satisfy the following straightforward property: X ⊆ V (G) is a clique
of G if and only if X =

⋂
x∈X N [x]. We shall see in Theorem 3 (1 =⇒ 2) that a similar

property holds for dicliques. Given a vertex set Z ⊆ V = V (D). We define

N+(Z) =
⋂
z∈Z N

+(z), N−(Z) =
⋂
z∈Z N

−(z).

α(Z) = (N−(N+(Z)), N+(Z)) and β(Z) = (N−(Z), N+(N−(Z))).

By convention, N+(∅) = V = N−(∅). Since D has no loops, we also have N+(V ) =
∅ = N−(V ). Then, N+(Z) is the set of all common out-neighbors of (the vertices of) Z,
and N−(Z) is the set of all common in-neighbors of Z. It should be clear then that for
all Z, we have Z ⊆ N−(N+(Z)) and Z ⊆ N+(N−(Z)). Clearly, both α(Z) and β(Z) are
disimplices as long as both of their components X and Y are non-empty, but note that
α(∅) = β(V ) = (∅, V ) and α(V ) = β(∅) = (V,∅) are never disimplices.

Theorem 3. Let D = (V,A) be a digraph and X, Y ⊆ V with X 6= ∅ 6= Y . Then, the
following conditions are equivalent:

1. (X, Y ) is a diclique of D.

2. N+(X) = Y and N−(Y ) = X.

3. (X, Y ) = α(X).

4. (X, Y ) = β(Y ).
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Proof. (1) =⇒ (2): Since (X, Y ) is a disimplex, we have Y ⊆ N+(X) and X ⊆ N−(Y ).
The maximality of (X, Y ) under � gives the result.

(2) =⇒ (1): Clearly, (X, Y ) is a disimplex. But none of X and Y can be be enlarged
preserving this condition. Hence (X, Y ) is maximal under the partial order � and (X, Y ) is
a diclique.

(2) =⇒ (3): α(X) = (N−(N+(X)), N+(X)) = (N−(Y ), Y ) = (X, Y ).
(3) =⇒ (2): α(X) = (X, Y ) =⇒ N+(X) = Y and X = N−(N+(X)) = N−(Y ).

The remaining cases are similar.

Theorem 4. The dicliques of D = (V,A) are:

D(D) = {α(Z) : Z ⊆ V, Z 6= ∅ 6= N+(Z)}
= {β(Z) : Z ⊆ V, Z 6= ∅ 6= N−(Z)}.

Proof. All the dicliques (X, Y ) are of the form (X, Y ) = α(X), with X 6= ∅ 6= Y = N+(X)
according to Theorem 3(1 =⇒ 3). Hence D(D) ⊆ {α(Z) : Z ⊆ V, Z 6= ∅ 6= N+(Z)}.

Now, take (X, Y ) = α(Z) = (N−(N+(Z)), N+(Z)) for some Z ⊆ V with Z 6= ∅ 6=
N−(Z). Then Y = N+(Z) andX = N−(N+(Z)) = N−(Y ), thereforeX is the set of common
in-neighbors of (the vertices of) Y . Note that Z ⊆ N−(N+(Z)) = X. It follows that the set of
common out-neighbors of X satisfy N+(X) = N+(N−(Y )) ⊇ Y , but N+(X) ⊆ N+(Z) = Y .
Therefore N+(X) = Y . Since X ⊇ Z 6= ∅ and Y = N+(Z) 6= ∅, it follows by Theorem 3
(2 =⇒ 1) that (X, Y ) is a diclique and hence {α(Z) : Z ⊆ V, Z 6= ∅ 6= N+(Z)} ⊆ D(D).

By the previous two paragraphs we have that

D(D) = {α(Z) : Z ⊆ V, Z 6= ∅ 6= N+(Z)}.

The argument for D(D) = {β(Z) : Z ⊆ V, Z 6= ∅ 6= N−(Z)} is entirely analogous.

In the singleton cases, Z = {x}, we write α(x) instead of α({x}) and β(x) instead of
β({x}). The singleton cases are specially interesting, since the corresponding dicliques α(x)

(and β(x)) tend to reproduce much of the structure of D within
−→
K (D) as we shall see in

Theorem 6.

1

2

3

4

5

6

7

8 α(3)

α(2)

α(2, 3)

β(7)

β(6)

∅
−→
K

−→
K

Figure 2: Examples of dicliques and diclique digraphs.
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To illustrate all of these consider the digraph in Figure 2: All the dicliques of the first
digraph are: α(2) = ({2}, {5, 6, 7}), α(3) = ({3}, {6, 7, 8}), β(6) = ({1, 2, 3}, {6}), β(7) =
({2, 3, 4}, {7}) and α({2, 3}) = ({2, 3}, {6, 7}). Note that α({2, 3}) is the only diclique
not coming from a singleton. For any other Z ⊆ V , we either have a non-simplex (like
α(6) = α({4, 6}) = (V,∅) and β(3) = β({1, 3, 7}) = (∅, V )) or a diclique that has been
previously considered (like α({1, 3}) = β(6) or α(4) = β(7)).

We say that a digraph D is a Neumann-Lara digraph, in brief, an NL-digraph if every
diclique of D is α(x) or β(x) for some x ∈ V (D). The following properties are straightforward
from the definitions.

Remark 5. Let D be a digraph and x, y ∈ V (D), then

1. α(x) is a diclique if and only if N+(x) 6= ∅,

2. β(x) is a diclique if and only if N−(x) 6= ∅,

3. α(x) = α(y) if and only if N+(x) = N+(y),

4. β(x) = β(y) if and only if N−(x) = N−(y) and

5. α(x) = β(y) if and only if x→ y and α(x) = (N−(y), N+(x)).

Whenever the minimum out-degree and the minimum in-degree of a digraph are not zero,
thanks to claims (1) and (2) in the previous remark, α(x) and β(x) are always dicliques for

all x ∈ V (D). In this case, α and β are morphisms of digraphs from D to
−→
K (D), according

to claim (1) in the following theorem:

Theorem 6. Let D be a digraph, x, y ∈ V (D) and α(x), α(y), β(x) and β(y) dicliques of
D.

1. If x→ y, then α(x)→ α(y) and β(x)→ β(y).

2. If D is a tournament, then x→ y if and only if α(x)→ α(y) (resp. β(x)→ β(y)).

3. If x 6→ y but α(x) → α(y) (resp. β(x) → β(y)), then there exists z ∈ N+(x) with
N+(y) ⊆ N+(z) (resp. z ∈ N−(y) with N−(x) ⊆ N−(z)).

Proof. If x → y, then clearly, y ∈ N+(x) and x ∈ N−(y). Hence, α(x) → α(y) and
β(x) → β(y). For the second claim, suppose that D is a tournament, if x = y the claim
is obvious (as D is a simple digraph and hence, does not contain loops), otherwise assume
x 6= y and either α(x) → α(y) or β(x) → β(y). For a contradiction, assume further that
x 6→ y, then y → x. Thus α(y) → α(x) and β(y) → β(x) , which is a contradiction (since
the diclique digraph of a simple digraph is again simple). For the third claim, suppose that
α(x)→ α(y). Then N+(x) ∩N−(N+(y)) 6= ∅. Thus, there exists z ∈ N+(x) ∩N−(N+(y)).
Since z ∈ N−(N+(y)), we have that N+(y) ⊆ N+(z). We proceed analogously for β(x) →
β(y).

Observe that the converse of claim 1 of the above theorem does not hold in general, for
instance, see Figure 3 (note that α(5) = α(3)).
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5

1 2

4 3

α(1) α(2)

α(4) α(3)

−→
K

Figure 3: A diclique digraph.

4 Surjectivity, subdigraphs, walks, paths and cycles

It was proved in [13] that there exist graphs which are not the clique graph of any graph,
in other words, K is not a surjective operator. In addition, the biclique operator is also not
surjective (see [12]). In our case the diclique operator is indeed surjective. Prisner proved this
for the class of (not necessarily simple) digraphs. We show here that every simple digraph
is the diclique digraph of some simple NL-digraph. Recall that a simple digraph D is an
NL-digraph if every diclique of D is α(x) or β(x) for some x ∈ V (D). We need to reproduce
a sketch of Prisner’s proof to adapt it for our purposes.

First, recall that if D is a digraph, the line digraph of D, denoted by L(D), is the digraph
whose vertex set is A(D) and its arc set consists of (x, y)→ (z, w) whenever (x, y), (z, w) ∈
A(D) and y = z.

We define D′ to be the digraph obtained from D by adding two new vertices s and t and
all the arcs s→ x and y → t for every former source x and every former sink y of D.

Theorem 7 (Prisner [21]). The diclique operator is surjective for the class of (not necessarily
simple) digraphs.

Proof. (Sketch) Let D be a digraph and D̃ the digraph obtained from D by deleting every

source and sink of D. It is proved that
−→
K (L(D)) = D̃. The surjectivity follows from the

definition of the digraph D′. We obtain that D =
−→
K (L(D′)).

Theorem 8. Let D be a digraph. Then L(D) is a NL-digraph.

Proof. Let w be a vertex of D neither a source nor a sink. Let A+(w) (resp. A−(w)) be the
set of arcs of D starting (resp. ending) on w. Observe that the pairs (A−(w), A+(w)) (for
w as stated), are exactly the dicliques of L(D). If a ∈ A−(w), then (A−(w), A+(w)) = α(a).

By the proof of Theorem 7, D =
−→
K (L(D′)), by Theorem 8, L(D′) is a NL-digraph and

by Theorem 1, L(D′) is simple if and only if D is simple, hence:

Corollary 9. Let D be a simple digraph. Then there exists a simple NL-digraph H such

that
−→
K (H) = D. Moreover, K(L(D′)) = D.
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As with clique and biclique graphs, the diclique operator does not preserve induced
subdigraphs. Let D be the digraph of Figure 4 and let H be the subdigraph induced by

{1, 3, 4, 5}. Observe that
−→
K (H) is not an induced subdigraph of

−→
K (D). However, the

following result is valid.

1 2

3

4

5
D

−→
K (D)

α(1) β(4)

−→
K

Figure 4: The diclique operator does not preserve induced subgraphs.

Theorem 10. Let H be an induced subdigraph of a digraph D. Then
−→
K (H) is a subdigraph

of
−→
K (D) (not induced in general).

Proof. Let (X, Y ) be a diclique of H. Clearly, it is a disimplex of D. Thus there exists a
diclique (X ′, Y ′) of D such that (X, Y ) � (X ′, Y ′). Since H is an induced subdigraph of D,
two different dicliques of H can not be included in the same diclique of D. Furthermore, if

(X, Y )→ (Z,W ) is an arc of
−→
K (H) and (X ′, Y ′) and (Z ′,W ′) are dicliques of D such that

(X, Y ) � (X ′, Y ′) and (Z,W ) � (Z ′,W ′), then (X ′, Y ′)→ (Z ′,W ′) is an arc of
−→
K (D).

It is well-known that the image under the clique operator of a complete graph Kn is a
vertex, which is a complete graph (K(Kn) = K1). For digraphs without symmetric arcs, the
notion of tournament is analogous to the concept of a complete graph. Note that if D is

a tournament,
−→
K (D) is not necessary a tournament. For instance, see the tournament on

Figure 5.

1 2

34

SR4

α(1)

α(4)

α(3)

α(2)

β(4)

−→
K (SR4)

−→
K

Figure 5: The image of a tournament.
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However, if T is a transitive tournament then
−→
K (T ) is a transitive tournament (we

consider the empty digraph to be transitive). First, we study the behavior of the diclique
operator for transitive digraphs.

Theorem 11. If D is a transitive digraph, then
−→
K (D) is a transitive digraph.

Proof. Let (X, Y ), (Z,W ) and (T, U) be vertices of
−→
K (D) such that (X, Y )→ (Z,W ) and

(Z,W ) → (T, U), that is, Y ∩ Z 6= ∅ and W ∩ T 6= ∅. Let y be a vertex in Y ∩ Z, then
for every x ∈ X and w ∈ W we get a directed path x → y → w (since (X, Y ), (Z,W ) are
dicliques of D). Since D is a transitive digraph, it follows that x→ w for every x ∈ X and
w ∈ W . Clearly (X, Y ∪W ) is a disimplex of D. By the maximality of (X, Y ), we get that
Y ∪W ⊆ Y . Thus, W ⊆ Y and it follows that Y ∩ T ⊇ W ∩ T 6= ∅. Hence, there exists an

arc (X, Y )→ (T, U) of
−→
K (D). We conclude that

−→
K (D) is a transitive digraph.

Note that the converse of the above theorem is not true. For instance, consider the
non-transitive digraph D in Figure 4 and its transitive image.

We denote by TTn the transitive tournament on n vertices. We assume its vertices
V (TTn) = {1, 2, . . . , n} to be ordered from the source to the sink. Note that the empty
digraph is the transitive tournament TT0 = ∅.

Theorem 12. For n ≥ 1 we have
−→
K (TTn) ∼= TTn−1. Also

−→
K (TT0) = ∅ = TT0.

Proof. Let Ik = {1, . . . , k}. Clearly, the dicliques of TTn are α(k) = (Ik, Ik) for k ∈
{1, . . . , n− 1}. By Theorem 6, we obtain that

−→
K (TTn) = TTn−1.

Since every arc is included in some diclique, walks can be transported back and forth

between D and
−→
K (D): Whenever you have a walk x0 → x1 → · · · → xr of length r in D,

you can get a walk in (A0, B0) → (A1, B1) → · · · → (Ar−1, Br−1) of length r − 1 in
−→
K (D)

with xi → xi+1 included in (Ai, Bi) and hence with xi ∈ Bi−1 ∩Ai for i = 1, 2, . . . , r− 1 and
x0 ∈ A0, xr ∈ Br−1. Conversely, starting with a walk (A0, B0)→ (A1, B1)→ · · · → (Ar, Br)

of length r in
−→
K (D) you can get a walk x0 → x1 → · · · → xr−1 of length r−1 in D, by taking

xi ∈ Bi ∩ Ai+1. This latter walk can always be extended with two extra vertices x−1 ∈ A0

and xr ∈ Br to a walk x−1 → x0 → · · · → xr of length r + 1.
Closed walks like x0 → x1 → · · · → xr = x0 and (A0, B0)→ (A1, B1)→ · · · → (Ar, Br) =

(A0, B0) can also be transported back and forth in the same way, but this time, the length
of the transported closed walk is the same as the original one.

We emphasize that path and cycles can not in general be transported readily in this way
since two of the dicliques (or vertices) in the transported path or cycle could end up being
equal, and hence the transported “path” becomes a walk. It is easy to construct examples
showing this for all cases. For instance, an explicit example can be seen in Figure 6 where
the path 1 → 2 → · · · → 8 gets transported to the walk α(1) → α(2) → · · · → α(7) which
is not a path, since α(2) = α(6). For this to happen, it is necessary that the original path
has chords and hence chordless paths and cycles can indeed be transported cleanly into (not
necessarily chordless) paths and cycles. Recall that any walk (closed walk) contains a path
(cycle), and that any walk in an acyclic digraph is a path.

With all these observations in mind, it is straight forward to prove the following theorem.
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1 2 3 4

5678

α(1)

α(2)

α(3)

α(4)

α(5)

α(6)

α(7)

−→
K

Figure 6: A path transported to a non-path

Theorem 13. Let D be a digraph.

1. If there is an (x, y)-path in D of length r, then there is a ((X,W ), (Z, Y ))-path in
−→
K (D) of length s ≤ r − 1 for some dicliques (X,W ), (Z, Y ) with x ∈ X and y ∈ Y .

2. If there is a ((X,W ), (Z, Y ))-path in
−→
K (D) of length s, then there is an (x, y)-path of

length r ≤ s+ 1 in D for any x ∈ X and y ∈ Y .

3. Chordless paths and cycles get transported into paths and cycles.

4. If D is strongly connected, then
−→
K (D) is strongly connected and

diam(D)− 1 ≤ diam(
−→
K (D)) ≤ diam(D) + 1.

5. −→g (D) = −→g (
−→
K (D)). In particular, D is acyclic if and only if

−→
K (D) is acyclic.

6. If D is acyclic with A(D) 6= ∅, then h(
−→
K (D)) = h(D)− 1. In particular, this is true

when D is transitive. �

Observe that a graph G is a connected graph if and only if K(G) is also a connected
graph. The analogous concept for digraphs is the strong connectivity. By Theorem 13.4 the

strong connectivity of D implies the strong connectivity of
−→
K (D), but the converse is not

true as the example in Figure 7 shows. Also, Figure 2 illustrates that
−→
K does not preserve

(weak) connectivity.
In [15], it was proved that the diameter of every connected graph G satisfies the inequality

analogous to that in Theorem 13.4, that is, diam(G) − 1 ≤ diam(K(G)) ≤ diam(G) + 1.

Notice that the directed cycle
−→
C n and

−→
K (
−→
C n) have the same diameter, since

−→
C n
∼=
−→
K (
−→
C n).

Also, Figure 3 shows a digraph D, where diam(D) = 4 and diam(
−→
K (D)) = 3; Figure 5

shows a digraph with diam(D) = 3 and diam(
−→
K (D)) = 4. Furthermore, Figure 7 shows

a case in which diam(D) = ∞ and diam(
−→
K (D)) = 2, while Figure 2 shows a case with

diam(D) =∞ = diam(
−→
K (D)) and diam(

−→
K 2(D)) = 0.

On the other hand, the girth is invariant under
−→
K (Theorem 13.5). However, large cycles

can indeed disappear quite dramatically as the following theorem shows. We assume here
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1

2 3

4

5

6

α(2)

α(4)

α(3)

−→
K

Figure 7: A non-strongly connected digraph with a strongly connected diclique digraph.

that the reader is familiar with basic group theory terminology. The circulant
−→
C n(J) is the

digraph whose vertices are Zn and i→ j if and only if j − i ∈ J ⊆ Zn. In our case, we only
consider simple digraphs and hence we must have 0 6∈ J to avoid loops, and

∣∣J ∩{i,−i}∣∣ ≤ 1
for every i ∈ Zn to avoid symmetric arcs.

We define A + m = {a + m (mod n) : a ∈ A} with A ⊆ Zn and m ∈ Zn. Similarly,
A+B = {a+ b (mod n) : a ∈ A, b ∈ B} with A,B ⊆ Zn.

Theorem 14. Let n = rs with r, s ≥ 3. Consider the subgroup J0 = rZn of Zn and a set

J = J0 + m. Then the diclique digraph of the circulant
−→
C n(J) is

−→
K (
−→
C n(J)) =

−→
C r({m}).

Furthermore, if (m, r) = 1, we have
−→
K (
−→
C n(J)) ∼=

−→
C r.

Proof. Without loss of generality, we can take m ∈ {0, 1, . . . , r− 1}. Note that, since J0 is
a group, we have J0 ± J0 = J0, J − J = J0 and J + J0 = J .

Let (X, Y ) be a diclique of
−→
C n(J). For any i ∈ X we have Y ⊆ N+(i) = i + J . Also,

for any j ∈ Y ⊆ i + J we have X ⊆ N−(j) = j − J ⊆ (i + J) − J = i + J0. Since
(i+ J0) + J = i+ J we have that (i+ J0, i+ J) is a disimplex. By the maximality of (X, Y )
we have that (X, Y ) = (i+J0, i+J) for some i. Hence, all the dicliques are of this form and
i can be taken to be i ∈ {0, 1, . . . , r − 1}.

Now if we have an arc (i + J0, i + J)→ (i′ + J0, i
′ + J), then (i + J) ∩ (i′ + J0) 6= ∅. It

follows that i′ ∈ i + J0 + m and i′ ≡ i + m (mod r) . Hence
−→
K (Cn(J)) ∼=

−→
C r(m). When

(m, r) = 1, m is a unit of Zr and we have
−→
K (
−→
C n(J)) ∼=

−→
C r.

We remark that the previous theorem states that there exists an infinite family of
−→
K -

convergent circulant digraphs (which are strongly connected). Another infinite family of
convergent non strongly connected digraphs are showed in Theorem 18. Particularly, they

are self-diclique digraphs (those digraphs D such that D ∼=
−→
K (D)).

In the case of the biclique operator, almost every graph G is KB- divergent [8], while
the number of KB-convergent graphs with no false twins vertices is finite (recall that two
vertices u, v ∈ V (G) are false twins if N(u) = N(v), for more details, see [9]). For the clique
operator, it is an open problem whether the convergence to the trivial graph is decidable. By
contrast, our recent theorems allow us to decide when a digraph D converges to the empty

digraph (i.e. D is
−→
K -mortal) under the diclique operator.

Theorem 15. A digraph D converges to ∅ if and only if it is acyclic.
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Proof. If D is acyclic, Theorem 13.6 says that for some n, h(
−→
Kn(D)) = 0. Hence,

−→
Kn(D)

does not contain arcs and
−→
Kn+1(D) = ∅. If D contains cycles, then g(D) <∞ = g(∅), and

the girth is an invariant thanks to Theorem 13.5.

5 Diclique divergence

Clique divergence in graphs has been widely studied in the last few decades from the seminal
paper [19] by Neumann Lara through many others, see for instance [16–18]. This problem
is very difficult and far from being solved. On the other hand, when concerns to the bi-
clique operator, it was proven that a graph G with at least 7 bicliques is KB-divergent [10]
(Theorem 4.3).

Recall that a digraph is
−→
K -divergent if limn→∞ |

−→
Kn(D)| =∞. Also, recall that TT0 = ∅.

For n ≥ 1, we say 1 is the first vertex of TTn and that n is the last vertex of TTn.
Let D be a digraph with vertex set {vi : i ∈ {1, . . . , n}} and consider a family of digraphs

{Fi : i ∈ {1, . . . , n}}, which we assume to be vertex-disjoint (i.e. renaming vertices if
necessary). The lexicographic product (or X-join) D[F1, F2, . . . , Fn] is a digraph with vertex
set
⋃n
i=1 V (Fi) and arc set(∪n

i=1A(Fi)
)
∪ {(fi, fj) : fi ∈ V (Fi), fj ∈ V (Fj), (vi, vj) ∈ A(D)} .

Note that no ambiguities arise in this definition in the case when some of the Fi are the
empty digraph.

Let r ≥ 1, and let s0, s1, . . . , sr and n1, n2, . . . , nr be two sequences of integers satisfy-
ing si ≥ 0 and ni ≥ 3 for all i. We define T = T (s0, n1, s1, . . . , nr, sr) as the following
lexicographic product (see Fig. 8):

T (s0, n1, s1, . . . , nr, sr) = TT2r+1[TTs0 ,
−→
C n1 , TTs1 , . . . ,

−→
C nr , TTsr ].

TT1
−→
C 3

TT4
−→
C 4

TT2
−→
C 3

Figure 8: T = T (1, 3, 4, 4, 2, 3, 0). All arcs between any two vertices from different compo-
nents go from left to right as suggested by the bold arc.

For i ∈ {0, 1, . . . , 2r}, we denote by Xi the vertex sets of the digraphs involved in the def-

inition of T (s0, n1, s1, . . . , nr, sr), that is X0 = V (TTs0), X1 = V (
−→
C n1), X2 = V (TTs1), X3 =
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V (
−→
C n2), . . . , X2r−1 = V (

−→
C nr), X2r = V (TTsr). Note that the Xi corresponding to the cycles

are exactly the odd ones: X2i−1 for i ∈ {1, 2, . . . , r}. Then we characterize the dicliques of
T (see also Fig. 9):

Theorem 16. The dicliques of T = T (s0, n1, s1, . . . , nr, sr) are:

D(T ) = {α(x) : x ∈ V (T ), N+(x) 6= ∅} ∪ {α(X2i−1) : N+(X2i−1) 6= ∅, i ∈ {1, 2, . . . , r}}.

Proof. By Theorem 3, all the dicliques of T are of the form α(X) for some X ⊆ V (T ) with
X 6= ∅ 6= N+(X). We show that these sets X can be taken to be either singletons X = {x}
for some x ∈ V (T ) or X = X2i−1 = V (

−→
C ni

) for some i ∈ {1, 2, . . . , r}.
We define a partial order on the vertices of T as follows:

x 4 y ⇐⇒ N+(x) ⊆ N+(y).

Let X ⊆ V (T ), and assume there exists a minimum element m = min4(X) of X under
4. Then we have N+(X) = ∩x∈XN+(x) = N+(m), and hence α(X) = α(m). It follows
that X can be replaced by the singleton {m} in this case. Two of these kind of dicliques are
represented in Fig. 9 (a) and (b).

Assume next, that X ⊆ V (T ), X 6= ∅, does not have a minimum element. Then it has
at least two minimal elements x, y. By construction, this may only happen in T when both

x and y belong to the same cycle, i.e. when x, y ∈ X2i−1 = V (
−→
C ni

) for some i. Also by
construction, in this case we must have N+(X) = N+({x, y}) = N+(X2i−1). It follows that
X may be replaced by X2i−1 in this case. A diclique of this type is represented in Fig. 9 (c).

Theorem 17.
−→
K (T (s0, n1, s1, . . . , nr, sr)) ∼= T (s0, n1, s1+1, n2, s2+1, . . . , nr−1, sr−1+1, nr, sr).

Proof. By Theorem 16, the dicliques of T are (see also Fig. 9):

D(T ) = {α(x) : x ∈ V (T ), N+(x) 6= ∅} ∪ {α(X2i−1) : N+(X2i−1) 6= ∅, i ∈ {1, 2, . . . , r}}.

It should be clear by the definition of T that for any two different X, Y ∈ {{x} : x ∈
V (T )} ∪ {X1, X3, . . . , X2r−1}, we have N+(X) 6= N+(Y ). Also, exactly one of those sets
has the property N+(X) = ∅, and this one does not generate a diclique, since, for such X,
α(X) = (V,∅) 6∈ D(T ). It follows that |D(T )| = |T |+ r − 1.

Now, if we take the subdigraph W of
−→
K (T ) induced by {α(x) : x ∈ V (T )}, we claim that

W ∼=
{
T (s0, n1, s1, . . . , nr, sr) if sr = 0
T (s0, n1, s1, . . . , nr, sr − 1) if sr 6= 0

Indeed, every x ∈ V (T ) generates a unique diclique α(x), except that, in the case sr 6= 0,
the last vertex w of the last TTsr , has N+(w) = ∅ and hence it does not generate a diclique
due to Remark 5. By Theorem 6, it follows that x→ y implies α(x)→ α(y). The converse
is not true in general, but in T a new edge α(x) → α(y) with x 6→ y, could only happen
when y 6→ x (otherwise, we would have α(x)↔ α(y), a contradiction) and this implies that
x, y belong to the same cycle x, y ∈ Xi for some i. But a direct inspection of such dicliques
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(a)

(b)

(c)

Figure 9: Some dicliques, α(X), of T = T (1, 3, 4, 4, 2, 3, 0). The vertices in X, which generate
the diclique, are highlighted. The dicliques (A,B) are shown by grouping the vertices of A
and B in red and blue respectively.

show that α(x)→ α(y) if and only if x→ y. It follows that W is isomorphic to an induced
subgraph of T , namely W ∼= T when sr = 0 or W ∼= T − {w} = T (s0, n1, s1, . . . , nr, sr − 1)
when sr 6= 0 as claimed.

There are some additional dicliques of the form α(X2i−1) for i ∈ {1, 2, . . . , r}. These
dicliques are α(X2i−1) = (Ai, Bi), with Ai = ∪2i−1j=0 Xj and Bi = ∪2rj=2iXj. Note that in the
case sr = 0, N+(X2r−1) = ∅, and hence α(X2r−1) = (V,∅) is not a diclique. It follows that
we have either r or r − 1 additional dicliques, depending on whether sr 6= 0 or sr = 0.

Now take one of these additional dicliques α(X2i−1) and note that in
−→
K (T ), we have

α(X2i−1) → α(X2j−1) for all j > i, α(X2j−1) → α(X2i−1) for all j < i, α(X2i−1) → α(x) for
all x ∈ Xj, j > 2i− 1, and α(x)→ α(X2i−1) for all x ∈ Xj, j ≤ 2i− 1.

It follows that, in the case sr 6= 0, each X2i−1 = V (
−→
C ni

) generates one vertex α(X2i−1)

in
−→
K (T ) which extends the TTsi induced by {α(x) : x ∈ X2i = V (TTsi)} in

−→
K (T ) by adding

a new source to it, and thus producing a TTsi+1. Hence, when adding these additional
vertices to W , we transform it from W ∼= T (s0, n1, s1, n2, s2, . . . , nr−1, sr−1, nr, sr − 1) to
−→
K (T ) ∼= T (s0, n1, (s1 + 1), n2, (s2 + 1), . . . , nr−1, (sr−1 + 1), nr, sr).

The only difference in the case sr = 0 is that α(X2r−1) is not a diclique, thus the
corresponding additional vertex is not present and hence the corresponding TTsr = TT0 is
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not extended. But in this case, we have W ∼= T (s0, n1, s1, n2, s2, . . . , nr−1, sr−1, nr, sr), so the

additional vertices transform W into
−→
K (T ) ∼= T (s0, n1, (s1 + 1), n2, (s2 + 1), . . . , nr−1, (sr−1 +

1), nr, sr), exactly as before.

Theorem 18. T = T (s0, n1, s1, . . . , nr, sr) is self-diclique for r = 1 and
−→
K -divergent for

r ≥ 2. Its growth rate is linear and given by |
−→
Kn(T )| = |T |+ n(r − 1).

Proof. Immediate from Theorem 17.

We already mentioned in the introduction that this family of
−→
K -divergent digraphs, is

novel in the way that its digraphs are simple, not strongly connected and grow linearly.
They are also NL-digraphs, contrary to Prisner’s family. Whenever α(X2i−1) is a diclique,
X2i = V (TTsi) is not empty and hence, it has a first element wi = max4(X2i). It follows
that α(X2i−1) = β(wi) and that T (s0, n1, s1, . . . , nr, sr) is a NL-digraph. Hence, the digraphs
in this family are the first known divergent ones which are NL-digraphs.

6 Categorical product and polynomial growth

Polynomial growth under the clique operator was studied in [16]. In this section, we present
an infinite family of digraphs with a polynomial growth under the diclique operator. We
need to introduce a new tool for this goal.

The tensor product (or categorical product) D ×H of two digraphs D and H is defined
by V (D×H) = V (D)× V (H) and (d, h)→ (d′, h′) is an arc of D×H if and only if d→ d′

in D and h → h′ in H (Figure 10). We point out that both projections π1(d, h) = d and

π2(d, h) = h are morphisms. Figure 10 illustrates this definition for
−→
P 3 ×

−→
P 3 and

−→
P 2 ×

−→
P 2

(here
−→
P n denotes a directed path on n vertices). Note that

−→
K (
−→
P 3×

−→
P 3) ∼=

−→
K (
−→
P 3)×

−→
K (
−→
P 3).

This is not just an isolated coincidence as the following theorem shows.

d1 d2 d3

h1

h2

h3

×
D

H D ×H

−→
K

α(d1) α(d2)

α(h1)

α(h2)

× −→
K (D)

−→
K (H)

−→
K (D ×H) ∼=

−→
K (D)×

−→
K (H)

Figure 10: Tensor product and the diclique operator.
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Theorem 19.
−→
K (D ×H) ∼=

−→
K (D)×

−→
K (H).

Proof. Notice that all the vertices of
−→
K (D)×

−→
K (H) are of the form ( (XD, YD), (XH , YH) )

with (XD, YD) ∈
−→
K (D) and (XH , YH) ∈

−→
K (H). We claim that the vertices of

−→
K (D×H) are

exactly the pairs (XD × XH , YD × YH) with (XD, YD) and (XH , YH) as defined before (see
Figure 11).

In order to prove the claim, let us show first that all the pairs of the form (XD×XH , YD×
YH) with (XD, YD) ∈

−→
K (D) and (XH , YH) ∈

−→
K (H) are dicliques of D ×H (see Figure 10).

Consider (xD, xH) ∈ XD ×XH and (yD, yH) ∈ YD × YH . These are vertices of D ×H. The
respective projections of these vertices induce arcs of D and H, namely xDyD ∈ A(D) and
xHyH ∈ A(H) (since (XD, YD) and (XH , YH) are dicliques of D and H, respectively). It
follows that ((xD, xH), (yD, yH)) ∈ A(D×H) and hence (XD ×XH , YD × YH) is a disimplex
of D × H. Now suppose that there is a vertex (zD, zH) ∈ D × H that could extend the
disimplex (XD×XH , YD×YH). Without loss of generality (by duality), we may assume that
the extended disimplex is (XD ×XH , YD × YH ∪ {(zD, zH)}). Since (zD, zH) 6∈ YD × YH , it
follows that either zD 6∈ YD or zH 6∈ YH , let us assume the former without loss of generality
again. Therefore, by projection, we have that (xD, zD) ∈ A(D) for all xD ∈ XD and the
diclique (XD, YD) could be extended to (XD, YD ∪ {zD}), a contradiction. We conclude that
(XD ×XH , YD × YH) is maximal and hence a diclique of D ×H.

(xD, xH)

(yD, yH)

XD YD

xD yD

XH

YH

xH

yH

×

YD × YH

XD ×XH

D

H

Figure 11: Dicliques of a tensor product.

Conversely, we show now that every clique is of the form (XD × XH , YD × YH) with

(XD, YD) ∈
−→
K (D) and (XH , YH) ∈

−→
K (H). Consider a diclique (X, Y ) of D × H. The

respective projections (XD, YD) := (π1(X), π1(Y )) and (XH , YH) := (π2(X), π2(Y )) must
be disimplices of D and H respectively (since morphisms preserve arcs). In particular, we
must have XD ∩ YD 6= ∅ and XH ∩ YH 6= ∅. Now (X, Y ) � (XD × XH , YD × YH) implies
(X, Y ) = (XD × XH , YD × YH) since (X, Y ) is maximal. Also observe that if any of these
disimplices could be extended in any way (say (XD, YD ∪ {d})), then the original diclique
could also be extended (i.e. (XD × XH , (YD ∪ {d}) × YH)) contrary to the maximality of
(X, Y ). It follows that (XD, YD) and (XH , YH) are dicliques of D and H respectively.
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We conclude that the vertices of
−→
K (D×H) are exactly all the pairs (XD×XH , YD×YH)

with (XD, YD) ∈
−→
K (D) and (XH , YH) ∈

−→
K (H).

Now, the required isomorphism ϕ :
−→
K (D)×

−→
K (H)→

−→
K (D ×H) is given by:

ϕ(((XD, YD), (XH , YH))) = (XD ×XH , YD × YH).

Indeed, we have that:

((XD, YD), (XH , YH))→ ((X ′D, Y
′
D), (X ′H , Y

′
H))

⇔ (XD, YD)→ (X ′D, Y
′
D) and (XH , YH)→ (X ′H , Y

′
H)

⇔ YD ∩X ′D 6= ∅ and YH ∩X ′H 6= ∅
⇔ (YD × YH) ∩ (X ′D ×X ′H) 6= ∅
⇔ (XD ×XH , YD × YH)→ (X ′D ×X ′H , Y ′D × Y ′H)
⇔ ϕ(((XD, YD), (XH , YH)))→ ϕ(((X ′D, Y

′
D), (X ′H , Y

′
H))).

The morphism ϕ is clearly bijective and hence an isomorphism.

The existence of digraphs with linear growth rate under the diclique operator was estab-
lished in Theorem 18 where a parameterized family of examples T (s0, n1, s1, . . . , nr, sr) was
given. We provide here another (minimal) example of a digraph of this type.

For m ≥ 0, let us define Wm as the digraph obtained from TTm+6 by simply reversing
the arcs (1, 3) and (m+ 4,m+ 6), that is:

A(Wm) = {(3, 1), (m+6,m+4)}∪{(x, y) : x < y, (x, y) 6= (1, 3) and (x, y) 6= (m+4,m+6)}.

We claim that W0 has a linear growth rate under
−→
K :

Theorem 20.
−→
K (Wm) ∼= Wm+1. In particular, |

−→
Kn(W0)| = |Wn| = n+ 6 = Θ(n).

Proof. It is straightforward to verify that the dicliques of Wm are exactly α({1, 2, 3}) = β(4)

and α(x) for x ∈ Wm and that the required isomorphism ϕ : Wm+1 →
−→
K (Wm) is given by:

ϕ(x) =


αWm(x) for x < 4,
βWm(4) for x = 4,
αWm(x− 1) for x > 4.

Theorem 21. For any integer m ≥ 0 there is a digraph D with m-th degree polynomial

growth rate under the diclique operator, that is, |
−→
Kn(D)| = Θ(nm).

Proof. Consider:
Wm

0 = W0 ×W0 × · · · ×W0︸ ︷︷ ︸
m times

.

By Theorems 19 and 20, we have that

|
−→
Kn(Wm

0 )| = |(
−→
Kn(W0))

m| = |
−→
Kn(W0)|m = (n+ 6)m = Θ(nm).

18



7 Open problems

There are only two known families of
−→
K -divergent digraphs, our family that has a linear

growth rate, and Prisner’s family that has a super-exponential growth rate. Also, all known
periodic digraphs are self-diclique. Several natural open questions arise here. First we recall
open problem 39 posed in [21]:

Problem 1. Are there periodic digraphs with period greater than one? That is, is there a

digraph D with
−→
K p(D) ∼= D 6∼=

−→
K (D)?

Concerning the study of periodic graphs under the clique operator, F. Escalante deter-
mined the existence of p-periodic graphs under K for every p ≥ 1 (more details are found
in [16]). On the other hand, M. Groshaus and L. Montero proved that a graph G either
diverges or converges under the biclique operator to the complete graphs K1 or K3 in at
most three steps [10]. The stated problem for periodic digraphs is even open for p = 2.

Problem 2. Are there digraphs with exponential growth rate? That is, is there a digraph D

with |
−→
Km(D)| = Θ(am) for some a > 1?

Problem 3. Can self-diclique digraphs be characterized?

Problem 4. Is
−→
K -divergence decidable?
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