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Abstract

Given a graph G and two vertices x, y ∈ V (G), we say that x is dominated by y if
the closed neighbourhood of x is contained in that of y. Here we prove that if x is a
dominated vertex, then G and G− {x} have the same dynamical behaviour under
the iteration of the clique operator.
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1 Introduction and Terminology

All our graphs are finite, simple and loopless. We shall identify induced sub-
graphs with their vertex sets, in particular, we shall write x ∈ G instead of
x ∈ V (G). Given x ∈ G, the closed neighbourhood NG[x] of x is the set con-
sisting of x and all its neighbours. Given x, y ∈ G we say that x is dominated
by y (in G) if NG[x] ⊆ NG[y]. Note that every vertex is dominated by itself,
however we say that x is dominated (without specifying who is y) only when x
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is dominated by a different vertex. Given two graphs G and H we say that G
is dismantleable to H if there is a sequence of graphs G0, G1, . . . , Gr satisfying
G = G0, H ∼= Gr and Gi+1 = Gi −{xi} where xi is a dominated vertex of Gi.

A clique of G is a maximal complete subgraph. The clique graph k(G) of G
is the intersection graph of all cliques of G: every clique is a vertex, two of
them being adjacent iff they share at least one vertex. Similarly, c(G) is the
intersection graph of all complete subgraphs of G. Clearly, k(G) is an induced
subgraph of c(G). We define inductively the iterated clique graphs by the for-
mulas k0(G) = G and kn+1(G) = k(kn(G)). Iterated clique graphs have been
studied in several papers, for a large bibliography see [10,11]. It is known (and
easy to prove) that a graph G is either k−divergent (i.e. limn→∞ |kn(G)| = ∞)
or k−stationary (i.e. kn(G) ∼= km(G) for some n < m). A special case of a
k−stationary graph is a k−null graph: for some n, kn(G) is isomorphic to
the one vertex graph K1. We say that two graphs G and H have the same
k−behaviour if both are k−divergent or both are k−stationary and both are
k−null or both are not k−null.

Given two graphs G and H, we say that H is a retract of G if there are two
weak morphism of graphs (images of adjacent vertices are adjacent or equal)
α : H −→ G and β : G −→ H such that β ◦ α is the identity in H.

Since whenever G is dismantleable to H, we have that H is a retract of G,
Neumann-Lara’s retraction theorem [7,8] tells us that if H is k−divergent
then so is G. Also, Prisner proved [9] that if G is dismantleable to K1 then
G is k−null. Our main Theorem (Thm. 5) states a stronger result: If G is
dismantleable to H then G and H have the same k−behaviour.

A special kind of dismantlings will play a key rôle in what follows:

Definition 1 Let G and H be graphs, we say that G
#→ H if H is isomorphic

to an induced subgraph H0 of G such that every vertex x in G is dominated
by some (not necessarily different) vertex y in H0.

It is straightforward to verify that G
#→ H implies that G is dismantleable to

H. Also G is dismantleable to H iff there is a sequence of graphs satisfying
G

#→ G0
#→ G1

#→ · · · #→ Gr = H. Note that c(G)
#→ k(G) for every graph G.

2 Dismantlings and k−behaviour

Lemma 2 Assume H0 is an induced subgraph of G satisfying that every vertex
in G is dominated by some vertex in H0. Let Q1, Q2 ∈ k(G) (not necessarily
different), then Q1 ∩Q2 6= ∅ iff Q1 ∩Q2 ∩H0 6= ∅.
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PROOF. Take Q1, Q2 ∈ k(G) and x ∈ Q1 ∩ Q2, as x is dominated by some
y ∈ H0 (possibly y = x) it follows that Q1 ∪ Q2 ⊆ NG[x] ⊆ NG[y], therefore
Q1 ∩Q2 ∩H0 ⊇ {y} 6= ∅. �

Theorem 3 If G
#→ H, then k(G)

#→ k(H).

PROOF. Let H0
∼= H be a induced subgraph of G such that every vertex in

G is dominated by some vertex in H0. For each clique Q ∈ k(H0) select a fixed
clique f(Q) ∈ k(G) satisfying Q ⊆ f(Q). Obviously Q = f(Q) ∩ H0, so we
know f to be injective. Now Lemma 2 tells us that Q1, Q2 ∈ k(H0) are adjacent
iff f(Q1) and f(Q2) are adjacent (in k(G)). It follows that k(H) ∼= k(H0) ∼=
f(k(H0)), where f(k(H0)) is the subgraph of k(G) induced by {f(Q) : Q ∈
k(H0)}.

Finally, if Q ∈ k(G) let Q0 ∈ k(H0) satisfying Q∩H0 ⊆ Q0. We claim that Q
is dominated by f(Q0): By Lemma 2 for every Q1 ∈ k(G) we have Q1∩Q 6= ∅
iff Q1 ∩Q ∩H0 6= ∅, but Q1 ∩Q ∩H0 ⊆ Q1 ∩Q0 ⊆ Q1 ∩ f(Q0). �

Theorem 4 If G
#→ H then kc(H)

#→ k2(G).

PROOF. Let Q = {Q1, Q2, . . . , Qr} ∈ k2(G). We know by Lemma 2 that
{Q1 ∩ H0, . . . , Qr ∩ H0} is a set of pairwise intersecting completes of H0.
Then for every clique Q = {Q1, Q2, . . . , Qr} ∈ k2(G) select a fixed clique
f(Q) ∈ kc(H0) satisfying f(Q) ⊇ {Q1 ∩H0, . . . , Qr ∩H0}. We claim that f is
an isomorphism onto its image and that every vertex in kc(H0) is dominated
by a vertex in f(k2(G)).

Let Q = {Q1, Q2, . . . , Qr},P = {P1, P2, . . . , Ps} ∈ k2(G). If f(Q) = f(P)
we have Qi ∩ H0 ∈ f(P) for all i = 1, . . . , r, since f(P) is a clique, we have
Qi ∩H0 ∩ Pj 6= ∅ for all i and j. Then Qi ∩ Pj 6= ∅ for all i and j. It follows
that Q = P and therefore f is injective.

Obviously f preserves adjacencies. If f(Q) is adjacent to f(P) for some Q,P ∈
k2(G), let C0 ∈ f(Q)∩ f(P) and and let Q0 be any clique in k(G) containing
C0. Then Q0 ∈ Q ∩ P and therefore Q and P are adjacent in k2(G). Thus f
is an isomorphism onto its image.

Now take Q = {C1, . . . , Cr} ∈ kc(H0). Let {Q1, Q2, . . . , Qr} be a set of cliques
of G such that Ci ⊆ Qi. Let Q0 ∈ k2(G) such that {Q1, . . . , Qr} ⊆ Q0. We
claim that f(Q0) dominates Q: If P ∈ kc(H0) is adjacent (or equal!) to Q,
without loss, assume C1 ∈ Q∩P. Now Q1 ∩H0 ∈ Q∩P since every complete
of H0 intersecting C1 also intersects Q1 ∩ H0 ⊇ C1. It follows that P is also
adjacent to f(Q0). �
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Theorem 5 If G is dismantleable to H, G and H have the same k−behaviour.
In particular, if x is a dominated vertex of G, G and G− {x} have the same
k−behaviour.

PROOF. Obviously, we only have to prove this in the case G
#→ H.

If H is k−null we have kn(G)
#→ kn(H) ∼= K1 for some n, but then kn(G)

must be a cone (must have a universal vertex), then kn+2(G) ∼= K1. On the
other hand, if G is k−null we have K1

∼= kn(G)
#→ kn(H) which implies

kn(H) ∼= K1.

If H is k−divergent, then kn(G)
#→ kn(H) implies |kn(G)| ≥ |kn(H)| and

therefore G is also k−divergent. Now, let us assume H to be k−stationary,
hence kn(H) ∼= kn+m(H) for some n ≥ 0, m ≥ 1. Using Theorem 3 we know
that kn+mj(G)

#→ kn+mj(H) ∼= kn(H) for all j. Then Theorem 4 gives us
kckn(H)

#→ kn+mj+2(G) for all j. Since any finite graph may only be dis-
mantleable to a finite number of (non-isomorphic) graphs, it follows that
kn+mj+2(G) ∼= kn+mi+2(G) for some i < j. Thus, G is also k−stationary. �

If kt(G) ∼= kt+p(G) for some minimum p ≥ 1 and some t ≥ 0, we say that p is
the period of G (we set p = ∞ for k−divergent graphs). The previous theorem
tells us that the finiteness of p is invariant under dismantlings, we shall show
now that p itself is not. Consider the graph R obtained from Fig. 1 identifying
the following pairs of vertices: {a, a′}, {b, b′} and {c, c′}.

a a′

c u v w c′

b b′

Fig. 1. A clockwork graph with period 3.

It has three dominated vertices: u, v and w. The period of R is 3, but R−{u}
and R− {v} have periods 6 and 1 respectively. You may check this either by
computer (we used GAP [2]) or by applying the theory of clockwork graphs
developed in [4]. Clockwork graphs have been successfully used to construct
examples in [5] (see also [6]) and others. Precursors of clockwork graphs were
also used to construct examples in [1] and [3].
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