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Abstract

Given a graph G and two vertices x,y € V(G), we say that = is dominated by y if
the closed neighbourhood of x is contained in that of y. Here we prove that if z is a
dominated vertex, then G and G — {z} have the same dynamical behaviour under
the iteration of the clique operator.
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1 Introduction and Terminology

All our graphs are finite, simple and loopless. We shall identify induced sub-
graphs with their vertex sets, in particular, we shall write € G instead of
x € V(G). Given z € G, the closed neighbourhood Ng|x] of x is the set con-
sisting of x and all its neighbours. Given z,y € G we say that x is dominated
by y (in G) if Nglz] € Ngly]. Note that every vertex is dominated by itself,
however we say that x is dominated (without specifying who is y) only when x
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is dominated by a different vertex. Given two graphs G and H we say that G
is dismantleable to H if there is a sequence of graphs Gg, G4, ..., G, satisfying
G =Gy, H= G, and G4 = G; — {x;} where z; is a dominated vertex of G;.

A clique of G is a maximal complete subgraph. The clique graph k(G) of G
is the intersection graph of all cliques of G: every clique is a vertex, two of
them being adjacent iff they share at least one vertex. Similarly, ¢(G) is the
intersection graph of all complete subgraphs of G. Clearly, k£(G) is an induced
subgraph of ¢(G). We define inductively the iterated clique graphs by the for-
mulas k°(G) = G and k""Y(G) = k(k"(G)). Tterated clique graphs have been
studied in several papers, for a large bibliography see [10,11]. It is known (and
easy to prove) that a graph G is either k—divergent (i.e. lim,_ |[k"(G)| = 00)
or k—stationary (i.e. k"(G) = k™(G) for some n < m). A special case of a
k—stationary graph is a k—null graph: for some n, k™(G) is isomorphic to
the one vertex graph K;. We say that two graphs G and H have the same
k—behaviour if both are k—divergent or both are k—stationary and both are
k—null or both are not k—null.

Given two graphs G and H, we say that H is a retract of G if there are two
weak morphism of graphs (images of adjacent vertices are adjacent or equal)
a:H— G and f: G — H such that o « is the identity in H.

Since whenever GG is dismantleable to H, we have that H is a retract of G,
Neumann-Lara’s retraction theorem [7,8] tells us that if H is k—divergent
then so is G. Also, Prisner proved [9] that if G is dismantleable to K; then
G is k—null. Our main Theorem (Thm. 5) states a stronger result: If G is
dismantleable to H then G and H have the same k—behaviour.

A special kind of dismantlings will play a key role in what follows:

Definition 1 Let G and H be graphs, we say that G A H iof H is isomorphic
to an induced subgraph Hy of G such that every vertexr x in G is dominated
by some (not necessarily different) vertex y in Hy.

It is straightforward to verify that G iy implies that GG is dismantleable to
H. Also G is dismantleable to H iff there is a sequence of graphs satisfying

¢t e, Ha 5. 5 G, = H. Note that c(Q) i k(G) for every graph G.

2 Dismantlings and k—behaviour

Lemma 2 Assume Hy is an induced subgraph of G' satisfying that every vertex
in G is dominated by some vertex in Hy. Let Q1,Q2 € k(G) (not necessarily

different), then Q1 N Q2 # @ iff Q1 N Q2N Hy # &.



PROOF. Take Q1,Qs € k(G) and = € Q1 N @2, as x is dominated by some
y € Hy (possibly y = z) it follows that @ U Q2 C Ng[z] C Ngly], therefore

QlﬂngHog{y}%Q. L]

Theorem 3 If G 5 H, then k(G) 5 k(H).

PROOF. Let Hy = H be a induced subgraph of G such that every vertex in
G is dominated by some vertex in Hy. For each clique @ € k(H,) select a fixed
clique f(Q) € k(G) satistying @ C f(Q). Obviously Q = f(Q) N Hy, so we
know f to be injective. Now Lemma 2 tells us that Q1, Q2 € k(Hy) are adjacent
iff f(@Q1) and f(Q2) are adjacent (in k(G)). It follows that k(H) = k(Hy) =
f(k(Hy)), where f(k(Hy)) is the subgraph of k(G) induced by {f(Q) : Q €
K(Hy)}.

Finally, if Q € k(G) let Qg € k(H,) satisfying Q N Hy C Qy. We claim that @)
is dominated by f(Qp): By Lemma 2 for every @)1 € k(G) we have Q1NQ # &
ffQNQNHy# @, but Q1NQNHy CQiNQo C Q1N f(Q). O

Theorem 4 If G 25 H then ke(H) 5 k*(G).

PROOF. Let Q = {Q1,Qo,...,Q,} € k*(G). We know by Lemma 2 that
{Q1 N Hy,...,Q, N Hy} is a set of pairwise intersecting completes of H.
Then for every clique Q@ = {Q1,Qs,...,Q,} € k*(GQ) select a fixed clique
f(Q) € ke(H,y) satisfying f(Q) 2 {Q1 N Ho,...,Q,NHy}. We claim that f is
an isomorphism onto its image and that every vertex in kc(Hy) is dominated
by a vertex in f(k*(Q@)).

Let @ = {Q1,Q2,....Q:},P = {P,P,..., P} € k2(G)- It f(Q) = f(P)
we have Q; N Hy € f(P) for all i = 1,...,7, since f(P) is a clique, we have
QiNHyN P # @ for all i and j. Then Q; N P; # & for all < and j. It follows
that @ = P and therefore f is injective.

Obviously f preserves adjacencies. If f(Q) is adjacent to f(P) for some Q, P €
k*(G), let Cy € f(Q) N f(P) and and let Qg be any clique in k(G) containing
Co. Then Qp € QNP and therefore Q and P are adjacent in k?(G). Thus f

is an isomorphism onto its image.

Now take @ = {C1,...,C.} € ke(Hy). Let {Q1,Qq,...,Q,} be a set of cliques
of G such that C; C Q;. Let Qy € k*(G) such that {Qy,...,Q,} C Q. We
claim that f(Qp) dominates Q: If P € kc(Hy) is adjacent (or equall) to Q,
without loss, assume C € QN P. Now Q1 N Hy € QNP since every complete
of Hy intersecting C also intersects ()1 N Hy 2 C}. It follows that P is also
adjacent to f(Qp). O



Theorem 5 If G is dismantleable to H, G and H have the same k—behaviour.
In particular, if x is a dominated vertex of G, G and G — {x} have the same
k—behaviour.

PROOF. Obviously, we only have to prove this in the case G * H.

If H is k—null we have £"(G) # k"(H) = K; for some n, but then £"(G)
must be a cone (must have a universal vertex), then ¥"™?(G) = K;. On the

other hand, if G is k—null we have K; = £"(G) # k"(H) which implies
K (H) = K.

It H is k—divergent, then k*(G) % k"(H) implies |k"(G)| > |k™(H)| and
therefore G is also k—divergent. Now, let us assume H to be k—stationary,
hence k"(H) = k"™ (H) for some n > 0,m > 1. Using Theorem 3 we know

that k"™ (G) # frtmi (H) = k™(H) for all j. Then Theorem 4 gives us
kek™(H) # kntmit2(G) for all j. Since any finite graph may only be dis-
mantleable to a finite number of (non-isomorphic) graphs, it follows that
kntmit?(@) &2 gmtmiet2(@G) for some i < j. Thus, G is also k—stationary. O

If k'(G) = k'*?(G) for some minimum p > 1 and some t > 0, we say that p is
the period of G (we set p = oo for k—divergent graphs). The previous theorem
tells us that the finiteness of p is invariant under dismantlings, we shall show
now that p itself is not. Consider the graph R obtained from Fig. 1 identifying
the following pairs of vertices: {a,a’}, {b,0'} and {c,'}.

Fig. 1. A clockwork graph with period 3.

It has three dominated vertices: u, v and w. The period of R is 3, but R — {u}
and R — {v} have periods 6 and 1 respectively. You may check this either by
computer (we used GAP [2]) or by applying the theory of clockwork graphs
developed in [4]. Clockwork graphs have been successfully used to construct
examples in [5] (see also [6]) and others. Precursors of clockwork graphs were
also used to construct examples in [1] and [3].
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