Posets, Clique Graphs and their Homotopy Type

F. Larrión ^a M.A. Pizaña ^b R. Villarroel–Flores ^{c,*}

^aInstituto de Matemáticas, U.N.A.M. C.U. México 04510 D.F. MEXICO.

Abstract

To any finite poset P we associate two graphs which we denote by $\Omega(P)$ and $\mho(P)$. Several standard constructions can be seen as $\Omega(P)$ or $\mho(P)$ for suitable posets P, including the comparability graph of a poset, the clique graph of a graph and the 1-skeleton of a simplicial complex. We interpret graphs and posets as simplicial complexes using complete subgraphs and chains as simplices. Then we study and compare the homotopy types of $\Omega(P)$, $\mho(P)$ and P. As our main application we obtain a theorem, stronger than those previously known, giving sufficient conditions for a graph to be homotopy equivalent to its clique graph. We also introduce a new graph operator H that preserves clique–Hellyness and dismantlability and is such that H(G) is homotopy equivalent to both its clique graph and the graph G.

Key words: clique graphs, graphs, posets, homotopy type

1 Introduction

For a finite poset P, denote by $\min(P)$ and $\max(P)$, respectively, the sets of minimal and maximal elements of P. We define $\Omega(P)$ as the graph with vertex set $\min(P)$ in which two distinct vertices x, y are adjacent if and only if there is $Z \in P$ such that $x \leq Z$ and $y \leq Z$. Dually we define the graph $\mho(P)$ with $V(\mho(P)) = \max(P)$ where $X \sim Y$ if they have a common lower bound. Note

^bUniversidad Autónoma Metropolitana, Depto. de Ingeniería Eléctrica. Av. San Rafael Atlixco 186. Col Vicentina. Del. Iztapalapa. México 09340 D.F. MEXICO.

^cInstituto de Matemáticas U.N.A.M. (Unidad Cuernavaca) Av. Universidad s/n, Col. Lomas de Chamilpa C.P. 62210 Cuernavaca, Morelos MEXICO

^{*} Corresponding author

Email addresses: paco@math.unam.mx (F. Larrión), map@xanum.uam.mx

⁽M.A. Pizaña), rafael@matem.unam.mx (R. Villarroel-Flores).

URL: http://xamanek.izt.uam.mx/map (M.A. Pizaña).

that, in particular, $\Omega(P)$ is an induced subgraph of the upper bound graph of P introduced in [9].

Posets P and graphs G have associated simplicial complexes $\Delta(P)$ and $\Delta(G)$, whose vertices are respectively the points in P and the vertices of G, the simplices in $\Delta(P)$ are the totally ordered subsets, and the simplices in $\Delta(G)$ are the complete subgraphs. Since each simplicial complex Δ can be thought of as a topological space via its geometric realization $|\Delta|$, one can attach topological concepts to both posets and graphs. We will say, for instance, that P and G are homotopy equivalent, denoted $P \simeq G$, if $|\Delta(P)|$ and $|\Delta(G)|$ are so. All our graphs and simplices are nonempty. The face poset $\mathcal{P}(\Delta)$ of a complex Δ , has as points the faces of Δ and is ordered by inclusion. Since $\Delta(\mathcal{P}(\Delta))$ is the barycentric subdivision of Δ , $\mathcal{P}(\Delta)$ is homeomorphic to Δ . For a graph G, we denote $\mathcal{P}(\Delta(G))$ just as $\mathcal{P}(G)$.

The clique graph K(G) of G is the intersection graph of its (maximal) cliques. It is known that G and K(G) are not always homotopy equivalent [10]. The motivations for this work came from two fronts: Poset topology, as in [11,13,3], and homotopy type of clique graphs, as in [10,8]. In this work, we are interested in comparing the homotopy types of P and $\Omega(P)$, $\mho(P)$ and their clique graphs. For instance, under a mild condition on P, $\Omega(P)$ has the same homotopy type as the clique graph of $\mho(P)$, see Theorem 3.3. Furthermore, Theorem 5.7 generalizes the main result in [8], which was the strongest result asserting the homotopy equivalence of a graph and its clique graph. As we shall see, an interesting feature of Ω and \mho is that, combined with standard constructions on posets, graphs and simplicial complexes, they yield several well known constructions, thus providing a unified approach to them. They can also be used to define new graph operators as our H in §7 which among other properties satisfies $G \simeq H(G) \simeq K(H(G))$ for any graph G.

2 Preliminaries

All our graphs, posets and complexes are finite. Our graphs are simple. Given a family of sets $\mathcal{F} = \{A_i\}_{i \in I}$, its nerve $\mathcal{N}(\mathcal{F})$ is the complex with vertex set I, and $\sigma \subseteq I$ is a simplex whenever $\cap_{i \in \sigma} A_i$ is not empty.

Proposition 2.1 ((10.6) from [3]) Let Δ be a simplicial complex, and let $\mathcal{F} = \{\Delta_i\}_{i \in I}$ be a cover of Δ by subcomplexes. If $\cap_{i \in \sigma} \Delta_i$ is contractible for any $\sigma \in \mathcal{N}(\mathcal{F})$, then $\Delta \simeq \mathcal{N}(\mathcal{F})$.

Let P be a poset. Then $C \subseteq P$ is called a *crosscut* if we have (a) C is an antichain, (b) every maximal chain in P contains an element of C, and (c) if $A \subseteq C$ is bounded above or below in P, then either $\text{lub}_P A$ or $\text{glb}_P A$ is defined. For any $C \subseteq P$, the simplicial complex with vertex set C and with simplices the bounded subsets of C is denoted $\Gamma(P, C)$.

Proposition 2.2 ((10.8) from [3]) If C is a crosscut of the poset P, then $\Gamma(P,C) \simeq P$.

Given posets P, Q, the product poset $P \times Q$ has as underlying set the Cartesian product of P and Q, and order relation given by $(x, y) \leq (z, w)$ if and only if $x \leq z$ and $y \leq w$. An *ideal* in a poset P is a subposet $I \subseteq P$ such that $i \in I$ and $x \leq i$ imply $x \in I$.

Proposition 2.3 ((10.10) from [3]) Let P and Q be posets and \mathcal{R} be an ideal in the product poset $P \times Q$. If $\mathcal{R}_x = \{ y \in Q \mid (x,y) \in \mathcal{R} \}$ is contractible for all $x \in P$ and $\mathcal{R}_y = \{ x \in P \mid (x,y) \in \mathcal{R} \}$ is contractible for all $y \in Q$, then P and Q are homotopy equivalent.

Proposition 2.4 ((10.12) from [3]) Let P be a poset and $f: P \to P$ be an order-preserving map such that $f(x) \ge x$ for all $x \in P$. Then $P \simeq f(P)$. \square

A poset is conically contractible to $p \in P$ if there is an order preserving map $f: P \to P$ such that $x \leq f(x) \geq p$ for all $x \in P$. For example, suppose the poset P has a point p such that $f(x) = \text{lub}_P\{p, x\}$ exists for all $x \in P$. In this case, we say that P is join contractible to p.

Theorem 2.5 ((1.6) from [11]) Let $f: P \to Q$ be a map of posets, then $P \simeq Q$ whenever $f^{-1}(Q_{\leq x}) = \{ a \in P \mid f(a) \leq x \}$ is contractible for all $x \in Q$. \square

If P is an induced subposet of Q, and $x \in Q$, we define $P_{\leq x}$ as $\{y \in P \mid y \leq x\}$. We define analogously $P_{< x}$, $P_{\geq x}$, $P_{> x}$. Given $x, y \in P$ we define the *closed interval* $[x, y] = P_{\geq x} \cap P_{\leq y}$.

Given a graph G, its set of vertices will be denoted by V(G), and its set of edges by E(G). We often refer to complete subgraphs just as completes. If $X \subseteq V$, the subgraph of G induced by X is denoted by G[X]. We usually identify induced subgraphs (hence completes) with their vertex sets. Let $N_G[x] = \{ y \in G \mid xy \in E(G) \} \cup \{x\}$ denote the closed neighborhood of x in G. The vertex x is dominated by $y \in G$ if $N_G[x] \subseteq N_G[y]$. The vertex x is dominated if it is dominated by some $y \neq x$. If $N_G[x] = N_G[y]$, then x and y are twins.

Proposition 2.6 ([10, proof of Proposition 3.2]) Let x be a dominated vertex in a graph G. Then $G - x \simeq G$.

Following Harary ([7, p. 20]), we define a clique of a graph G as a maximal complete subgraph. The clique graph of G is the intersection graph K(G) of the set of cliques of G. The second clique graph of G is $K^2(G) = K(K(G))$. A family \mathcal{F} of subsets of a set $S \neq \emptyset$ is Helly if for every $\mathcal{F}' \subseteq \mathcal{F}$ such that all elements of \mathcal{F}' intersect pairwise we have that $\cap \mathcal{F}' \neq \emptyset$. A graph G is clique-Helly if the collection of all cliques of G is Helly.

As in [6], we write $G \xrightarrow{\#} H$ if H is isomorphic to an induced subgraph H_0 of G such that every vertex $x \in G$ is dominated by some $y \in H_0$. By [6], H_0 can be obtained from G by removing one dominated vertex at a time so, by Proposition 2.6, $G \simeq H$ in this case. Note, however, that $G \xrightarrow{\#} H$ is a much stronger condition than $G \simeq H$, since it implies [6, Thm. 3] that $K(G) \xrightarrow{\#} K(H)$.

A graph G is dismantlable if there is an ordering $\{x_1, \ldots, x_n\}$ of its vertices where x_i is dominated in $G[x_i, x_{i+1}, \ldots, x_n]$ for $i = 1, \ldots, n-1$. Again by Proposition 2.6, dismantlable graphs are contractible.

3 Poset conditions

For $a \in P$, we will denote $a_* = \min(P) \cap P_{\leq a}$ and $a^* = \max(P) \cap P_{\geq a}$.

Definition 3.1 We say that the poset P is:

Up-Helly if for any complete $\{X_1, \ldots, X_n\}$ of $\mho(P)$, there is $x \in \min(P)$ such that $x \leq X_i$ for all i, i. e., if the family $\{X_* \mid X \in \max(P)\}$ is Helly.

Down–Helly if for any complete $\{x_1, \ldots, x_n\}$ of $\Omega(P)$, there is $X \in \max(P)$ such that $x_i \leq X$ for all i, i. e., if the family $\{x^* \mid x \in \min(P)\}$ is Helly.

Up-Sperner if whenever $X, Y \in \max(P)$ and $X_* \subseteq Y_*$, then X = Y.

Down-Sperner if whenever $x, y \in \min(P)$ and $x^* \subseteq y^*$, then x = y.

Atomized if each subset of min(P) that has an upper bound in P has a least upper bound in P.

Coatomized if each subset of max(P) that has a lower bound in P has a greatest lower bound in P.

Proposition 3.2 Let P be any poset, and $x, y \in \min(P)$. Then:

- (1) if $x^* \subseteq y^*$ then x is dominated by y in $\Omega(P)$,
- (2) if P is up-Helly and x is not dominated in $\Omega(P)$, x^* is a clique of $\mathcal{C}(P)$,
- (3) if P is up-Helly and down-Sperner, then x^* is a clique for all $x \in \min(P)$.

PROOF. (1): If $x^* \subseteq y^*$ and $z \in N_{\Omega(P)}[x]$, there is $X \in \max(P)$ such that $z, x \leq X$. Since $X \in x^* \subseteq y^*$ we have $y \leq X$. Hence $yz \in E(\Omega(P))$. For (2), suppose that P is up–Helly and x^* is not a clique in $\mathcal{U}(P)$. Then there is $Z \in \max(P) - x^*$ with $x^* \cup \{Z\}$ complete. By the up–Helly condition, there is $z \in \min(P)$ less than all elements in $x^* \cup \{Z\}$. But then $x^* \subseteq z^*$ and so, by (1), x is dominated by z. For (3), we proceed as in the proof of (2) up to the point where we get $x^* \subseteq z^*$. By the down–Sperner condition, we would have x = z, a contradiction. Hence x^* is a clique.

Theorem 3.3 Let P be an up-Helly poset. Then $\Omega(P) \xrightarrow{\#} K(\mho(P))$.

PROOF. Given $C = \{X_1, \ldots, X_n\}$ a clique of $\mathfrak{T}(P)$, by the up-Helly condition there is $x \in \min(P)$ such that $X_i \geq x$ for $i = 1, \ldots, n$. Define $\Phi(C)$ as one such x. It can be proven that Φ gives an embedding $\Phi \colon K(\mathfrak{T}(P)) \to \Omega(P)$, hence $\Omega(P)[\operatorname{im} \Phi] \cong K(\mathfrak{T}(P))$. Given $y \in \Omega(P)$, extend y^* to a clique C of $\mathfrak{T}(P)$. As $y^* \subseteq C = \Phi(C)^*$, y is dominated by $\Phi(C)$ by Proposition 3.2(1). \square

If P is up–Helly and down–Sperner then, by Proposition 3.2(3), x^* is a clique for all $x \in \min(P)$, and the proof of Theorem 3.3 shows that Φ is an isomorphism. Therefore, we have:

Corollary 3.4 Let P be a poset. If P is up-Helly and down-Sperner, then $K(\mathcal{O}(P)) \cong \Omega(P)$. An isomorphism $\Omega(P) \to K(\mathcal{O}(P))$ is given by $x \mapsto x^*$.

4 The poset of complete subgraphs

In this section we fix a graph G, and $P = \mathcal{P}(G)$ is the poset of complete subgraphs of G, ordered by inclusion. Here $\min(P)$ can be identified with the vertices of G and $\max(P)$ is the set of cliques of G. Hence $\mho(P) = K(G)$ and $\varOmega(P) = G$. This shows in particular that any graph is $\varOmega(P)$ for some poset P. It is clear that for any G, P is down–Helly, up–Sperner, atomized and coatomized. The poset P is up–Helly if and only if G is clique–Helly, and P is down–Sperner whenever G has no dominated vertices. Thus, Theorem 3.3 and Corollary 3.4 give results of Escalante ([5]): if G is clique–Helly, then $G \xrightarrow{\#} K^2(G)$, and if in addition G has no dominated vertices, then it is K-periodic of period at most 2.

Definition 4.1 We say that the poset P is:

Join-increasing if it is atomized and for bounded subsets $C \subsetneq D$ of min(P) we have $lub_P C < lub_P D$.

Strongly up-Sperner if it is atomized and $a = \text{lub}_P a_*$ for all $a \in P$.

The reader can prove that these properties characterize face posets:

Theorem 4.2 A poset P is the face poset of a simplicial complex if and only if P is strongly up–Sperner and join–increasing.

Theorem 4.3 Let P be a poset. Then the following statements are equivalent:

- (1) $P \cong \mathcal{P}(\Omega(P))$,
- (2) $P \cong \mathcal{P}(\Omega(Q))$ for some poset Q,
- (3) $P \cong \mathcal{P}(\mathcal{V}(Q))$ for some poset Q,
- (4) $P \cong \mathcal{P}(G)$ for some graph G,
- (5) P is down-Helly, join-increasing and strongly up-Sperner.

PROOF. To prove (2) implies (3) we observe that $\mathcal{U}(Q^{\text{op}}) \cong \Omega(Q)$. The only nontrivial implication left to prove is that (5) implies (1). Let us assume that P is down–Helly, join–increasing and strongly up–Sperner. Define a poset map $P \to \mathcal{P}(\Omega(P))$ sending $x \mapsto x_*$ and, in the other direction, send $c = \{x_1, \ldots, x_n\}$ to $\text{lub}_P c$. These maps are inverse to each other.

We obtain as a corollary the result from [12, Prop. 6.3.11]: a face poset is the poset of completes of a graph if and only if it is down–Helly.

5 The posets of bounded complete subgraphs

We define the poset of bounded complete subgraphs $\mathcal{P}_b \mathcal{U}(P)$ as the subposet of $\mathcal{P}(\mathcal{U}(P))$ of completes $\{X_1, \ldots, X_r\}$ of $\mathcal{U}(P)$ that are bounded below in P. Dually, we define $\mathcal{P}_b \mathcal{U}(P) = \mathcal{P}_b \mathcal{U}(P^{op})$. We have that $\mathcal{P}_b \mathcal{U}(P) = \mathcal{P}(\Gamma(P, \max(P)))$, hence $\mathcal{P}_b \mathcal{U}(P)$ is a face poset.

Proposition 5.1 Let P be any finite poset. Then,

- (1) if P is up-Helly, then $\mathcal{P}_b \mathcal{U}(P) = \mathcal{P}(\mathcal{U}(P))$,
- (2) if P is coatomized, then $P \simeq \mathcal{P}_b \mho(P)$,
- (3) if P is up-Helly and coatomized, then $P \simeq \mho(P)$.

PROOF. (1): If P is up–Helly, all completes of $\mho(P)$ are bounded below in P, so $\mathcal{P}_b\mho(P) = \mathcal{P}(\mho(P))$. For (2), if P is coatomized then $\max(P)$ is a crosscut in P, so by Proposition 2.2 we have $\mathcal{P}_b\mho(P) = \mathcal{P}(\Gamma(P, \max(P))) \simeq P$. Then (3) follows from (1) and (2).

For $P = \mathcal{P}(G)$ with G a graph, Proposition 5.1(3) gives a theorem of Prisner from [10]: if G is clique–Helly then $G \simeq K(G)$.

We now turn to homotopy properties of the posets of bounded complete subgraphs that are not consequences of the results in Section 3.

Proposition 5.2 For any poset P, $\mathcal{P}_b\Omega(P) \simeq \mathcal{P}_bU(P)$.

PROOF. Let $\mathcal{R} = \{ (c, C) \in \mathcal{P}_b\Omega(P) \times \mathcal{P}_b\mathcal{U}(P) \mid x \leq X \text{ for } x \in c, X \in C \}$. Then \mathcal{R} is an ideal. If $c \in \mathcal{P}_b\Omega(P)$, then \mathcal{R}_c has $C = \bigcap_{x \in c} x^*$ as maximum element, hence it is contractible. In a similar way, \mathcal{R}_C is contractible for all $C \in \mathcal{P}_b\mathcal{U}(P)$. The assertion now follows from Proposition 2.3.

From this last proposition, Proposition 5.1(1) and its dual, we obtain:

Corollary 5.3 If P is up-Helly and down-Helly, then $\Omega(P) \simeq \mho(P)$.

We shall give weaker conditions than up—Helly which instead of equality in Proposition 5.1(1) will yield homotopy equivalence, hence preserving the homotopy equivalence of Corollary 5.3.

Whenever P is coatomized, we define $h: P \to P$ by $h(a) = \operatorname{glb}_P a^*$. Then h is order preserving, and $a \leq h(a) = h(h(a))$ for all $a \in P$. We say that a subposet Q of a coatomized poset P is nice whenever $Q_{\leq h(x)}$ (= $\{y \in Q \mid y \leq h(x)\}$) is contractible for all $x \in P$.

Proposition 5.4 If Q is a nice subposet of P then $P \simeq Q$.

PROOF. Let $\mathcal{R} = \{ (x,y) \in P^{\text{op}} \times Q \mid y \leq h(x) \}$. Then \mathcal{R} is an ideal, and given $x \in P$, we have $\mathcal{R}_x = Q_{\leq h(x)}$, which is contractible by hypothesis. Given $y \in Q$, we have $\mathcal{R}_y = \{ x \mid y \leq h(x) \}$. Since for any $x \in \mathcal{R}_y$ we have that $h(x), y \in \mathcal{R}_y$ and $x \leq h(x) \geq y$, we obtain that for all y, \mathcal{R}_y is conically contractible to y. Hence $P \simeq Q$ by Proposition 2.3.

Corollary 5.5 If $\mathcal{P}_b \mathcal{U}(P)$ is nice in $\mathcal{P}(\mathcal{U}(P))$ and $\mathcal{P}_b \Omega(P)$ is nice in $\mathcal{P}(\Omega(P))$, then $\Omega(P) \simeq \mathcal{U}(P)$.

In the case that $P = \mathcal{P}(G)$ for some graph G, we obtain:

Theorem 5.6 Let G be a graph and assume that $\mathcal{P}_b \mathfrak{V}(\mathcal{P}(G))_{\leq h(C)}$ is contractible for all completes C of K(G). Then $G \simeq K(G)$.

For a family $C = \{q_1, \ldots, q_k\}$ of subsets of some set, we denote by $\Delta(C)$ the minimal simplicial complex with vertex set $\cup C$ such that each q_i is a simplex. In particular if C is a complete of K(G), the vertices of $\Delta(C)$ are some vertices of G and C is the cover of maximal faces of $\Delta(C)$. We clearly have that $\mathcal{P}_b\mathcal{V}(\mathcal{P}(G))_{\leq C} = \mathcal{P}(\mathcal{N}(C))$, and it follows by the Nerve Theorem 2.1 that $\mathcal{P}_b\mathcal{V}(\mathcal{P}(G))_{\leq C} \simeq \Delta(C)$. Therefore the following is equivalent to Theorem 5.6:

Theorem 5.7 Let G be a graph and assume that $\Delta(h(C))$ is contractible for all completes C of K(G). Then $G \simeq K(G)$.

Note that in the particular case of theorems 5.6 and 5.7, h(C) can be simply defined as the intersection of all the cliques $Q \in K^2(G)$ satisfying $C \subseteq Q$. It can be seen that the hypothesis in [8, Thm. 2.4] is equivalent to $\mathcal{P}_b \mathfrak{V}(\mathcal{P}(G))_{\leq h(C)}$ being conically contractible for all completes C of K(G). As in [8], Theorem 5.7 implies that the only Whitney triangulation of a closed surface which is not homotopy equivalent to its clique graph is the octahedron. Here, a Whitney triangulation of a surface S is a graph S such that $|\Delta(G)| \cong S$.

6 The poset of atomic elements

For a poset P, we call an element $a \in P$ atomic if it is the least upper bound of the minimal elements below it. In this section we consider the subposet of all atomic elements of an atomized poset P.

Proposition 6.1 Suppose that P is an atomized poset. Let P' be the subposet of P given by $P' = \{ a \in P \mid \text{lub}_P a_* = a \}$. Then

- (1) $P \simeq P'$,
- (2) if $a, b \in \max(P')$, $X \in \max(P)$ are such that $a, b \leq X$, then a = b. Hence $\{\{X \in \max(P) \mid X \geq a\}\}_{a \in \max(P')}$ is a partition of the set $\{X \in \max(P) \mid X \geq a \text{ for some } a \in \max(P')\}.$
- (3) $\mho(P) \xrightarrow{\#} \mho(P')$. A subgraph of $\mho(P)$ isomorphic to $\mho(P')$ can be obtained as the induced subgraph on a set of representatives of the partition of (2).

PROOF. Define $f: P \to P'$ by $f(a) = \text{lub}_P a_*$. Then f is surjective and order preserving, and $f(a) \leq a$ for all $a \in P$. This proves (1) by Proposition 2.4. With the hypothesis of (2), we obtain $a = f(a), b = f(b) \leq f(X) \in P'$. Since a, b are maximal in P', we get a = f(X) = b, proving (2). But note that the set at the end of (2) is not necessarily all of $\max(P)$. For (3), take a map $j: \mathcal{V}(P') \to \mathcal{V}(P)$ such that $j(a) \geq a$ for $a \in \max(P')$. This is injective by (2). If $ab \in E(\mathcal{V}(P'))$ there is $x \in \min(P)$ with $x \leq a, b$, so $j(a)j(b) \in E(\mathcal{V}(P))$. Clearly j is a graph isomorphism onto its image. We now show that each vertex in $\mathcal{V}(P)$ is dominated by some vertex in $\mathcal{V}(P)[\min j]$: Given $B \in \max(P)$, pick $b \in \max(P')$ with $f(B) \leq b$. Then f(B) dominates f(B) since if $f(B) \leq b \leq f(B)$, there is $f(B) \leq b \leq f(B)$ and $f(B) \in E(\mathcal{V}(P))$.

We now focus on posets P of the form $P = \mathcal{P}(G)$ for a graph G. Since they are strongly up–Sperner, all elements of P are atomic, so in this case it is only interesting to consider *coatomic* elements, that is, those elements that are the greatest lower bound of the maximal elements above them. For a coatomized poset P define P'' = h(P), where $h(a) = \operatorname{glb}_P a^*$ as before.

Lemma 6.2 If P is coatomized, and $x, y \in \min(P)$ are such that h(x) = h(y), then x, y are twins in $\Omega(P)$.

Lemma 6.3 Let P be a down-Helly, up-Sperner and coatomized poset. Let $a \in P''$. Then:

- (1) If $x \in a_*$ and $y \in \min(P)$ dominates x in $\Omega(P)$, then $y \in a_*$.
- (2) If $a \in \min(P'')$, then any pair of elements of a_* are twins in $\Omega(P)$. \square

The pared graph Pared G of a graph G was defined by Prisner in [10]. Its vertices can be taken as the nonempty sets of vertices D in G such that any pair of vertices in D are twins and no vertex in D is dominated by a vertex outside D. For $D_1, D_2 \in V(\operatorname{Pared} G)$, we put $D_1D_2 \in E(\operatorname{Pared} G)$ if there are $x \in D_1, y \in D_2$ such that $xy \in E(G)$. The reader can check that Theorem 6.4 follows from Lemmas 6.2 and 6.3.

Theorem 6.4 For any graph G, $\min(P(G)'') = V(\operatorname{Pared} G)$ and, moreover, $\Omega(P(G)'') \cong \operatorname{Pared} G$.

From the dual of Proposition 6.1(3) we obtain that $G \xrightarrow{\#} \operatorname{Pared} G$ for any graph G, and so $G \simeq \operatorname{Pared} G$, which is Proposition 3.2 in [10].

7 The poset of intervals

Let P be any poset. Then Int P is the poset of all intervals $[a, b] \subseteq P$, ordered by inclusion. It is shown in [13] that Int P is homeomorphic to P.

The minimal elements in $\operatorname{Int} P$ are the intervals of the form [a,a] and so $\operatorname{min}(\operatorname{Int} P)$ can be identified with P. We will write [a,a] as [a]. We also have $\operatorname{max}(\operatorname{Int} P) = \{ [x,X] \mid x \in \operatorname{min}(P), X \in \operatorname{max}(P), x \leq X \}$. Hence $\Omega(\operatorname{Int} P)$ is a graph with vertices $\{ [a] \mid a \in P \}$ with two vertices [a], [b] adjacent if there is an interval [x,y] of P containing both a and b. That is, $[a][b] \in E(\Omega(\operatorname{Int} P))$ if and only if $a \neq b$ and $\{a,b\}$ is both bounded above and below in P. In other words, $\Omega(\operatorname{Int} P)$ is $\operatorname{DB}(P)$, the double bound graph of P introduced in [9,4]. Two vertices [x,X], [y,Y] in $\Omega(\operatorname{Int} P)$ are adjacent whenever there is $a \in P$ that is both an upper bound of $\{x,y\}$ and a lower bound of $\{X,Y\}$.

Since Int $P^{\text{op}} = \text{Int } P$, we have that for any property α about P that implies or is implied by a property β about Int P, the dual property of α also implies or is implied by β .

Proposition 7.1 Let P be an atomized and coatomized poset and $a \in P$.

- (1) If [a] is not dominated in $\Omega(\operatorname{Int} P)$, then $a \in P' \cap P''$.
- (2) If $a \in P' \cap P''$ then $[a]^*$ is a clique in $\mho(\operatorname{Int} P)$.

PROOF. (1) follows from the fact that for all $a \in P$, the elements $[\operatorname{lub}_P a_*]$ and $[\operatorname{glb}_P a^*]$ dominate [a] in $\Omega(\operatorname{Int} P)$. (2): Let $a \in P' \cap P''$ and suppose that $[a]^*$ is not a clique in $\Omega(\operatorname{Int} P)$. Then there is an interval [x,X] with $x \in \min(P)$, $X \in \max(P)$ that does not contain a, but intersects all maximal intervals that contain a. This implies that x is a lower bound of a^* and X is an upper bound of a_* . But then we have $x \leq a \leq X$, a contradiction. \square

Proposition 7.2 If P is a strongly up-Sperner poset, then:

- (1) $\Omega(\text{Int }P)$ has no pair of distinct twins.
- (2) If [a] is dominated in $\Omega(\operatorname{Int} P)$, then $[a]^*$ is not a clique in $\mho(\operatorname{Int} P)$.

PROOF. Suppose [a] is dominated by [b] in $\Omega(\operatorname{Int} P) \cong \operatorname{DB}(P)$. If $x \in a_*$ then $[x][b] \in E(\Omega(\operatorname{Int} P))$, which implies $x \leq b$, and so $a_* \subseteq b_*$. The strongly up–Sperner condition implies then that $a \leq b$. From this, (1) follows. For (2), suppose that [a] is dominated by [b] in $\Omega(\operatorname{Int} P)$ with $a \neq b$. Then $a_* \subsetneq b_*$, so we can take $y \in b_* - a_*$. Let $Y \in \max(P)$ such that $a \leq Y$. Then $a \notin [y, Y]$, but if $a \in [x, X]$ with $x \in \min(P)$, $X \in \max(P)$, then $b \in [x, X] \cap [y, Y]$. Hence $[a]^*$ is not a clique.

From Propositions 7.1 and 7.2 we obtain:

Corollary 7.3 If P is strongly up–Sperner and coatomized, and $a \in P$, the following are equivalent:

- (1) [a] is not dominated in $\Omega(\operatorname{Int} P)$,
- (2) $a \in P''$,
- (3) $[a]^*$ is a clique in $\mathfrak{V}(\operatorname{Int} P)$.

For the rest of the section, $P = \mathcal{P}(G)$ for G a graph. In this case, Int P is up–Helly, and strongly up–Sperner.

The vertex-clique bipartite graph of G is defined as the graph BK(G) with $V(BK(G)) = V(G) \cup V(K(G))$, $E(BK(G)) = \{xC \mid x \in G, C \in K(G), x \in C\}$. The edge graph $\mathcal{E}(G)$ (see [1]) has $V(\mathcal{E}(G)) = E(G)$ and two edges of G are adjacent vertices in $\mathcal{E}(G)$ if they intersect or are opposite edges of a 4-cycle in G. The vertex-clique bipartite graph was denoted in [1] as I(G).

The graph $\Omega(\operatorname{Int} \mathcal{P}(G)) \cong \operatorname{DB}(\mathcal{P}(G))$ has as vertices the complete subgraphs of G and two distinct completes C, D are adjacent if $C \cap D \neq \emptyset$ and $C \cup D$ is complete. On the other hand $\mho(\operatorname{Int} \mathcal{P}(G))$ has as vertices the pairs (x, C), where x is a vertex of G and C is a clique of G with $x \in C$, and two distinct pairs (x, C), (y, D) are adjacent if $\{x, y\} \subseteq C \cap D$. That is, $\mho(\operatorname{Int} \mathcal{P}(G)) = \mathcal{E}(BK(G))$. We will denote $\mathcal{E}(BK(G))$ just as H(G).

By Proposition 5.1(3), we have $\mathcal{P}(G) \simeq \operatorname{Int} \mathcal{P}(G) \simeq \mho(\operatorname{Int} \mathcal{P}(G)) = H(G)$, so:

Theorem 7.4 For any graph
$$G$$
, $G \simeq H(G)$.

We now turn to the clique graph of H(G).

Proposition 7.5 For any graph G, $K(H(G)) \cong DB(P(G)'')$.

PROOF. Theorem 3.3 gives an embedding $\Phi: K(H(G)) \to \Omega(\operatorname{Int} \mathcal{P}(G))$ that sends a clique in H(G), say $\mathcal{C} = \{[x_1, C_1], \dots, [x_n, C_n]\}$ to a lower bound in $\min(\operatorname{Int}(\mathcal{P}(G)))$, which in this case must be $[\cap C_i]$. Conversely, if $C \in \mathcal{P}(G)''$, then $[C]^*$ is a clique in H(G) by Corollary 7.3, so $[C] = \Phi([C]^*)$.

Theorem 7.6 For any graph G, $K(H(G)) \simeq G$.

PROOF. There is a poset map $f: \mathcal{P}(\mathrm{DB}(\mathcal{P}(G))) \to \mathcal{P}(G)$ sending the complete $\{C_1, \ldots, C_n\}$ in $\mathrm{DB}(\mathcal{P}(G))$ to $\cup_{i=1}^n C_i$. For a fixed $D \in \mathcal{P}(G)$ we have that $F = f^{-1}(\mathcal{P}(G)_{\leq D}) = \{\{C_1, \ldots, C_n\} \in \mathcal{P}(\mathrm{DB}(\mathcal{P}(G))) \mid \cup_{i=1}^n C_i \subseteq D\}$ is join contractible to $\{D\}$, since if $\{C_1, \ldots, C_n\} \in F$, then $\{C_1, \ldots, C_n\} \cup \{D\}$ is a complete subgraph in $\mathrm{DB}(\mathcal{P}(G))$ and an element of F. By Theorem 2.5, f is a homotopy equivalence, and the result then follows, since from Theorem 3.3, we obtain that $\mathrm{DB}(\mathcal{P}(G)) = \Omega(\mathrm{Int}\,\mathcal{P}(G)) \xrightarrow{\#} K(H(G))$.

By theorems 3 and 4 of [1], a graph G is dismantlable if and only if H(G) is dismantlable, and G is clique—Helly if and only if H(G) is clique—Helly. The operator K preserves clique—Hellyness ([5]) and dismantlability ([2]). Hence we obtain a corollary of theorems 7.4 and 7.6:

Corollary 7.7 Any composition of graph operators $T = T_n \circ T_{n-1} \circ \cdots \circ T_1$ such that $T_i \in \{H, K \circ H\}$ for all $i = 1, \ldots, n$, preserves clique–Hellyness, dismantlability, and homotopy type.

Acknowledgments. We thank the anonymous referees for many detailed and valuable suggestions that helped us to improve this paper.

References

- [1] H.J. Bandelt, M. Farber and P. Hell. Absolute reflexive retracts and absolute bipartite retracts. Discrete Appl. Math. 44 (1993) 9–20.
- [2] H.J. Bandelt and E. Prisner. *Clique graphs and Helly graphs*. J. Combin. Theory Ser. B **51** (1991) 34–45.
- [3] A. Björner. Topological methods. In *Handbook of combinatorics*, Vol. 1, 2, pages 1819–1872. Elsevier, Amsterdam, 1995.
- [4] D. Diny. The double bound graph of a partially ordered set. J. Combin. Inform. System Sci. 10 (1985) 52–56.
- [5] F. Escalante. Über iterierte Clique-Graphen. Abh. Math. Sem. Univ. Hamburg **39** (1973) 59–68.
- [6] M.E. Frías-Armenta, V. Neumann-Lara and M.A. Pizaña. *Dismantlings and iterated clique graphs*. Discrete Math. **282** (2004) 263–265.
- [7] F. Harary. Graph theory. Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969.
- [8] F. Larrión, V. Neumann-Lara and M.A. Pizaña. On the homotopy type of the clique graph. J. of the Brazilian Comp. Soc. 7 (2002) 69–73.
- [9] F.R. McMorris and T. Zaslavsky. Bound graphs of a partially ordered set. J. Combin. Inform. System Sci. 7 (1982) 134–138.
- [10] E. Prisner. Convergence of iterated clique graphs. Discrete Math. 103 (1992) 199–207.
- [11] D. Quillen. Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in Math. 28 (1978) 101–128.
- [12] B.S.W. Schröder. Ordered sets. Birkhäuser Boston Inc., Boston, MA, 2003.
- [13] J.W. Walker. Canonical homeomorphisms of posets. European J. Combin. 9 (1988) 97–107.