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Abstract

To any finite poset P we associate two graphs which we denote by Ω(P ) and 0(P ).
Several standard constructions can be seen as Ω(P ) or 0(P ) for suitable posets P ,
including the comparability graph of a poset, the clique graph of a graph and the
1–skeleton of a simplicial complex. We interpret graphs and posets as simplicial
complexes using complete subgraphs and chains as simplices. Then we study and
compare the homotopy types of Ω(P ), 0(P ) and P . As our main application we
obtain a theorem, stronger than those previously known, giving sufficient conditions
for a graph to be homotopy equivalent to its clique graph. We also introduce a new
graph operator H that preserves clique–Hellyness and dismantlability and is such
that H(G) is homotopy equivalent to both its clique graph and the graph G.
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1 Introduction
For a finite poset P , denote by min(P ) and max(P ), respectively, the sets of
minimal and maximal elements of P . We define Ω(P ) as the graph with vertex
set min(P ) in which two distinct vertices x, y are adjacent if and only if there
is Z ∈ P such that x ≤ Z and y ≤ Z. Dually we define the graph 0(P ) with
V (0(P )) = max(P ) where X ∼ Y if they have a common lower bound. Note
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that, in particular, Ω(P ) is an induced subgraph of the upper bound graph
of P introduced in [9].

Posets P and graphs G have associated simplicial complexes ∆(P ) and ∆(G),
whose vertices are respectively the points in P and the vertices of G, the
simplices in ∆(P ) are the totally ordered subsets, and the simplices in ∆(G)
are the complete subgraphs. Since each simplicial complex ∆ can be thought
of as a topological space via its geometric realization |∆|, one can attach
topological concepts to both posets and graphs. We will say, for instance, that
P and G are homotopy equivalent, denoted P ' G, if |∆(P )| and |∆(G)|
are so. All our graphs and simplices are nonempty. The face poset P(∆) of
a complex ∆, has as points the faces of ∆ and is ordered by inclusion. Since
∆(P(∆)) is the barycentric subdivision of ∆, P(∆) is homeomorphic to ∆.
For a graph G, we denote P(∆(G)) just as P(G).

The clique graph K(G) of G is the intersection graph of its (maximal) cliques.
It is known that G and K(G) are not always homotopy equivalent [10]. The
motivations for this work came from two fronts: Poset topology, as in [11,13,3],
and homotopy type of clique graphs, as in [10,8]. In this work, we are inter-
ested in comparing the homotopy types of P and Ω(P ), 0(P ) and their clique
graphs. For instance, under a mild condition on P , Ω(P ) has the same ho-
motopy type as the clique graph of 0(P ), see Theorem 3.3. Furthermore,
Theorem 5.7 generalizes the main result in [8], which was the strongest result
asserting the homotopy equivalence of a graph and its clique graph. As we
shall see, an interesting feature of Ω and 0 is that, combined with standard
constructions on posets, graphs and simplicial complexes, they yield several
well known constructions, thus providing a unified approach to them. They
can also be used to define new graph operators as our H in §7 which among
other properties satisfies G ' H(G) ' K(H(G)) for any graph G.

2 Preliminaries

All our graphs, posets and complexes are finite. Our graphs are simple. Given
a family of sets F = {Ai}i∈I , its nerve N (F) is the complex with vertex set I,
and σ ⊆ I is a simplex whenever ∩i∈σAi is not empty.

Proposition 2.1 ((10.6) from [3]) Let ∆ be a simplicial complex, and let
F = {∆i}i∈I be a cover of ∆ by subcomplexes. If ∩i∈σ∆i is contractible for
any σ ∈ N (F), then ∆ ' N (F). 2

Let P be a poset. Then C ⊆ P is called a crosscut if we have (a) C is an
antichain, (b) every maximal chain in P contains an element of C, and (c) if
A ⊆ C is bounded above or below in P , then either lubP A or glbP A is defined.
For any C ⊆ P , the simplicial complex with vertex set C and with simplices
the bounded subsets of C is denoted Γ(P, C).
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Proposition 2.2 ((10.8) from [3]) If C is a crosscut of the poset P , then
Γ(P, C) ' P . 2

Given posets P, Q, the product poset P×Q has as underlying set the Cartesian
product of P and Q, and order relation given by (x, y) ≤ (z, w) if and only if
x ≤ z and y ≤ w. An ideal in a poset P is a subposet I ⊆ P such that i ∈ I
and x ≤ i imply x ∈ I.

Proposition 2.3 ((10.10) from [3]) Let P and Q be posets and R be an ideal
in the product poset P × Q. If Rx = { y ∈ Q | (x, y) ∈ R} is contractible for
all x ∈ P and Ry = {x ∈ P | (x, y) ∈ R} is contractible for all y ∈ Q, then
P and Q are homotopy equivalent. 2

Proposition 2.4 ((10.12) from [3]) Let P be a poset and f : P → P be an
order–preserving map such that f(x) ≥ x for all x ∈ P . Then P ' f(P ). 2

A poset is conically contractible to p ∈ P if there is an order preserving map
f : P → P such that x ≤ f(x) ≥ p for all x ∈ P . For example, suppose the
poset P has a point p such that f(x) = lubP{p, x} exists for all x ∈ P . In this
case, we say that P is join contractible to p.

Theorem 2.5 ((1.6) from [11]) Let f : P → Q be a map of posets, then P ' Q
whenever f−1(Q≤x) = { a ∈ P | f(a) ≤ x } is contractible for all x ∈ Q. 2

If P is an induced subposet of Q, and x ∈ Q, we define P≤x as { y ∈ P | y ≤ x }.
We define analogously P<x, P≥x, P>x. Given x, y ∈ P we define the closed
interval [x, y] = P≥x ∩ P≤y.

Given a graph G, its set of vertices will be denoted by V (G), and its set of edges
by E(G). We often refer to complete subgraphs just as completes. If X ⊆ V ,
the subgraph of G induced by X is denoted by G[X]. We usually identify
induced subgraphs (hence completes) with their vertex sets. Let NG[x] =
{ y ∈ G | xy ∈ E(G) } ∪ {x} denote the closed neighborhood of x in G. The
vertex x is dominated by y ∈ G if NG[x] ⊆ NG[y]. The vertex x is dominated
if it is dominated by some y 6= x. If NG[x] = NG[y], then x and y are twins.

Proposition 2.6 ([10, proof of Proposition 3.2]) Let x be a dominated vertex
in a graph G. Then G− x ' G. 2

Following Harary ([7, p. 20]), we define a clique of a graph G as a maximal
complete subgraph. The clique graph of G is the intersection graph K(G) of
the set of cliques of G. The second clique graph of G is K2(G) = K(K(G)).
A family F of subsets of a set S 6= ∅ is Helly if for every F ′ ⊆ F such that
all elements of F ′ intersect pairwise we have that ∩F ′ 6= ∅. A graph G is
clique–Helly if the collection of all cliques of G is Helly.
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As in [6], we write G
#−→ H if H is isomorphic to an induced subgraph H0

of G such that every vertex x ∈ G is dominated by some y ∈ H0. By [6],
H0 can be obtained from G by removing one dominated vertex at a time
so, by Proposition 2.6, G ' H in this case. Note, however, that G

#−→ H
is a much stronger condition than G ' H, since it implies [6, Thm. 3] that
K(G)

#−→ K(H).

A graph G is dismantlable if there is an ordering {x1, . . . , xn} of its vertices
where xi is dominated in G[xi, xi+1, . . . , xn] for i = 1, . . . , n − 1. Again by
Proposition 2.6, dismantlable graphs are contractible.

3 Poset conditions

For a ∈ P , we will denote a∗ = min(P ) ∩ P≤a and a∗ = max(P ) ∩ P≥a.

Definition 3.1 We say that the poset P is:

Up–Helly if for any complete {X1, . . . , Xn} of 0(P ), there is x ∈ min(P )
such that x ≤ Xi for all i, i. e., if the family {X∗ | X ∈ max(P ) } is Helly.

Down–Helly if for any complete {x1, . . . , xn} of Ω(P ), there is X ∈ max(P )
such that xi ≤ X for all i, i. e., if the family {x∗ | x ∈ min(P ) } is Helly.

Up–Sperner if whenever X, Y ∈ max(P ) and X∗ ⊆ Y∗, then X = Y .
Down–Sperner if whenever x, y ∈ min(P ) and x∗ ⊆ y∗, then x = y.
Atomized if each subset of min(P ) that has an upper bound in P has a least

upper bound in P .
Coatomized if each subset of max(P ) that has a lower bound in P has a

greatest lower bound in P .

Proposition 3.2 Let P be any poset, and x, y ∈ min(P ). Then:

(1) if x∗ ⊆ y∗ then x is dominated by y in Ω(P ),
(2) if P is up–Helly and x is not dominated in Ω(P ), x∗ is a clique of 0(P ),
(3) if P is up–Helly and down–Sperner, then x∗ is a clique for all x ∈ min(P ).

PROOF. (1): If x∗ ⊆ y∗ and z ∈ NΩ(P )[x], there is X ∈ max(P ) such that
z, x ≤ X. Since X ∈ x∗ ⊆ y∗ we have y ≤ X. Hence yz ∈ E(Ω(P )). For (2),
suppose that P is up–Helly and x∗ is not a clique in 0(P ). Then there is
Z ∈ max(P ) − x∗ with x∗ ∪ {Z} complete. By the up–Helly condition, there
is z ∈ min(P ) less than all elements in x∗ ∪ {Z}. But then x∗ ⊆ z∗ and so,
by (1), x is dominated by z. For (3), we proceed as in the proof of (2) up to
the point where we get x∗ ⊆ z∗. By the down–Sperner condition, we would
have x = z, a contradiction. Hence x∗ is a clique. 2
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Theorem 3.3 Let P be an up–Helly poset. Then Ω(P )
#−→ K(0(P )).

PROOF. Given C = {X1, . . . , Xn} a clique of 0(P ), by the up–Helly condi-
tion there is x ∈ min(P ) such that Xi ≥ x for i = 1, . . . , n. Define Φ(C) as one
such x. It can be proven that Φ gives an embedding Φ: K(0(P )) → Ω(P ),
hence Ω(P )[im Φ] ∼= K(0(P )). Given y ∈ Ω(P ), extend y∗ to a clique C of
0(P ). As y∗ ⊆ C = Φ(C)∗, y is dominated by Φ(C) by Proposition 3.2(1). 2

If P is up–Helly and down–Sperner then, by Proposition 3.2(3), x∗ is a clique
for all x ∈ min(P ), and the proof of Theorem 3.3 shows that Φ is an isomor-
phism. Therefore, we have:

Corollary 3.4 Let P be a poset. If P is up–Helly and down–Sperner, then
K(0(P )) ∼= Ω(P ). An isomorphism Ω(P ) → K(0(P )) is given by x 7→ x∗.

4 The poset of complete subgraphs

In this section we fix a graph G, and P = P(G) is the poset of complete
subgraphs of G, ordered by inclusion. Here min(P ) can be identified with the
vertices of G and max(P ) is the set of cliques of G. Hence 0(P ) = K(G)
and Ω(P ) = G. This shows in particular that any graph is Ω(P ) for some
poset P . It is clear that for any G, P is down–Helly, up–Sperner, atomized
and coatomized. The poset P is up–Helly if and only if G is clique–Helly,
and P is down–Sperner whenever G has no dominated vertices. Thus, Theo-
rem 3.3 and Corollary 3.4 give results of Escalante ([5]): if G is clique–Helly,
then G

#−→ K2(G), and if in addition G has no dominated vertices, then it is
K–periodic of period at most 2.

Definition 4.1 We say that the poset P is:

Join–increasing if it is atomized and for bounded subsets C ( D of min(P )
we have lubP C < lubP D.

Strongly up–Sperner if it is atomized and a = lubP a∗ for all a ∈ P .

The reader can prove that these properties characterize face posets:

Theorem 4.2 A poset P is the face poset of a simplicial complex if and only
if P is strongly up–Sperner and join–increasing. 2

Theorem 4.3 Let P be a poset. Then the following statements are equivalent:

(1) P ∼= P(Ω(P )),
(2) P ∼= P(Ω(Q)) for some poset Q,
(3) P ∼= P(0(Q)) for some poset Q,
(4) P ∼= P(G) for some graph G,
(5) P is down–Helly, join–increasing and strongly up–Sperner.
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PROOF. To prove (2) implies (3) we observe that 0(Qop) ∼= Ω(Q). The
only nontrivial implication left to prove is that (5) implies (1). Let us as-
sume that P is down–Helly, join–increasing and strongly up–Sperner. Define
a poset map P → P(Ω(P )) sending x 7→ x∗ and, in the other direction, send
c = {x1, . . . , xn} to lubP c. These maps are inverse to each other. 2

We obtain as a corollary the result from [12, Prop. 6.3.11]: a face poset is the
poset of completes of a graph if and only if it is down–Helly.

5 The posets of bounded complete subgraphs

We define the poset of bounded complete subgraphs Pb0(P ) as the subposet of
P(0(P )) of completes {X1, . . . , Xr} of 0(P ) that are bounded below in P . Du-
ally, we define PbΩ(P ) = Pb0(P op). We have that Pb0(P ) = P(Γ(P, max(P ))),
hence Pb0(P ) is a face poset.

Proposition 5.1 Let P be any finite poset. Then,

(1) if P is up–Helly, then Pb0(P ) = P(0(P )),
(2) if P is coatomized, then P ' Pb0(P ),
(3) if P is up–Helly and coatomized, then P ' 0(P ).

PROOF. (1): If P is up–Helly, all completes of 0(P ) are bounded below
in P , so Pb0(P ) = P(0(P )). For (2), if P is coatomized then max(P ) is a
crosscut in P , so by Proposition 2.2 we have Pb0(P ) = P(Γ(P, max(P ))) ' P .
Then (3) follows from (1) and (2). 2

For P = P(G) with G a graph, Proposition 5.1(3) gives a theorem of Prisner
from [10]: if G is clique–Helly then G ' K(G).

We now turn to homotopy properties of the posets of bounded complete sub-
graphs that are not consequences of the results in Section 3.

Proposition 5.2 For any poset P , PbΩ(P ) ' Pb0(P ).

PROOF. Let R = { (c, C) ∈ PbΩ(P )× Pb0(P ) | x ≤ X for x ∈ c, X ∈ C }.
Then R is an ideal. If c ∈ PbΩ(P ), then Rc has C = ∩x∈cx

∗ as maximum
element, hence it is contractible. In a similar way, RC is contractible for all
C ∈ Pb0(P ). The assertion now follows from Proposition 2.3. 2

From this last proposition, Proposition 5.1(1) and its dual, we obtain:

Corollary 5.3 If P is up–Helly and down–Helly, then Ω(P ) ' 0(P ). 2

We shall give weaker conditions than up–Helly which instead of equality in
Proposition 5.1(1) will yield homotopy equivalence, hence preserving the ho-
motopy equivalence of Corollary 5.3.
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Whenever P is coatomized, we define h : P → P by h(a) = glbP a∗. Then h is
order preserving, and a ≤ h(a) = h(h(a)) for all a ∈ P . We say that a subposet
Q of a coatomized poset P is nice whenever Q≤h(x) (= { y ∈ Q | y ≤ h(x) })
is contractible for all x ∈ P .

Proposition 5.4 If Q is a nice subposet of P then P ' Q.

PROOF. Let R = { (x, y) ∈ P op ×Q | y ≤ h(x) }. Then R is an ideal, and
given x ∈ P , we have Rx = Q≤h(x), which is contractible by hypothesis. Given
y ∈ Q, we have Ry = {x | y ≤ h(x) }. Since for any x ∈ Ry we have that
h(x), y ∈ Ry and x ≤ h(x) ≥ y, we obtain that for all y, Ry is conically
contractible to y. Hence P ' Q by Proposition 2.3. 2

Corollary 5.5 If Pb0(P ) is nice in P(0(P )) and PbΩ(P ) is nice in P(Ω(P )),
then Ω(P ) ' 0(P ). 2

In the case that P = P(G) for some graph G, we obtain:

Theorem 5.6 Let G be a graph and assume that Pb0(P(G))≤h(C) is con-
tractible for all completes C of K(G). Then G ' K(G). 2

For a family C = {q1, . . . , qk} of subsets of some set, we denote by ∆(C)
the minimal simplicial complex with vertex set ∪C such that each qi is a
simplex. In particular if C is a complete of K(G), the vertices of ∆(C) are
some vertices of G and C is the cover of maximal faces of ∆(C). We clearly have
that Pb0(P(G))≤C = P(N (C)), and it follows by the Nerve Theorem 2.1 that
Pb0(P(G))≤C ' ∆(C). Therefore the following is equivalent to Theorem 5.6:

Theorem 5.7 Let G be a graph and assume that ∆(h(C)) is contractible for
all completes C of K(G). Then G ' K(G). 2

Note that in the particular case of theorems 5.6 and 5.7, h(C) can be simply de-
fined as the intersection of all the cliques Q ∈ K2(G) satisfying C ⊆ Q. It can
be seen that the hypothesis in [8, Thm. 2.4] is equivalent to Pb0(P(G))≤h(C)

being conically contractible for all completes C of K(G). As in [8], Theorem 5.7
implies that the only Whitney triangulation of a closed surface which is not
homotopy equivalent to its clique graph is the octahedron. Here, a Whitney
triangulation of a surface S is a graph G such that |∆(G)| ∼= S.

6 The poset of atomic elements

For a poset P , we call an element a ∈ P atomic if it is the least upper bound
of the minimal elements below it. In this section we consider the subposet of
all atomic elements of an atomized poset P .
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Proposition 6.1 Suppose that P is an atomized poset. Let P ′ be the subposet
of P given by P ′ = { a ∈ P | lubP a∗ = a }. Then

(1) P ' P ′,
(2) if a, b ∈ max(P ′), X ∈ max(P ) are such that a, b ≤ X, then a = b.

Hence {{X ∈ max(P ) | X ≥ a }}a∈max(P ′) is a partition of the set
{X ∈ max(P ) | X ≥ a for some a ∈ max(P ′) }.

(3) 0(P )
#−→ 0(P ′). A subgraph of 0(P ) isomorphic to 0(P ′) can be obtained

as the induced subgraph on a set of representatives of the partition of (2).

PROOF. Define f : P → P ′ by f(a) = lubP a∗. Then f is surjective and order
preserving, and f(a) ≤ a for all a ∈ P . This proves (1) by Proposition 2.4.
With the hypothesis of (2), we obtain a = f(a), b = f(b) ≤ f(X) ∈ P ′. Since
a, b are maximal in P ′, we get a = f(X) = b, proving (2). But note that the
set at the end of (2) is not necessarily all of max(P ). For (3), take a map
j : 0(P ′) → 0(P ) such that j(a) ≥ a for a ∈ max(P ′). This is injective by (2).
If ab ∈ E(0(P ′)) there is x ∈ min(P ) with x ≤ a, b, so j(a)j(b) ∈ E(0(P )).
Clearly j is a graph isomorphism onto its image. We now show that each vertex
in 0(P ) is dominated by some vertex in 0(P )[im j]: Given B ∈ max(P ), pick
b ∈ max(P ′) with f(B) ≤ b. Then j(b) dominates B, since if AB ∈ E(0(P )),
there is x ∈ min(P ) with x ≤ A, B, therefore x ≤ f(B) ≤ b ≤ j(b) and
Aj(b) ∈ E(0(P )). 2

We now focus on posets P of the form P = P(G) for a graph G. Since they
are strongly up–Sperner, all elements of P are atomic, so in this case it is only
interesting to consider coatomic elements, that is, those elements that are the
greatest lower bound of the maximal elements above them. For a coatomized
poset P define P ′′ = h(P ), where h(a) = glbP a∗ as before.

Lemma 6.2 If P is coatomized, and x, y ∈ min(P ) are such that h(x) = h(y),
then x, y are twins in Ω(P ). 2

Lemma 6.3 Let P be a down–Helly, up–Sperner and coatomized poset.
Let a ∈ P ′′. Then:
(1) If x ∈ a∗ and y ∈ min(P ) dominates x in Ω(P ), then y ∈ a∗.
(2) If a ∈ min(P ′′), then any pair of elements of a∗ are twins in Ω(P ). 2

The pared graph Pared G of a graph G was defined by Prisner in [10]. Its
vertices can be taken as the nonempty sets of vertices D in G such that any
pair of vertices in D are twins and no vertex in D is dominated by a vertex
outside D. For D1, D2 ∈ V (Pared G), we put D1D2 ∈ E(Pared G) if there are
x ∈ D1, y ∈ D2 such that xy ∈ E(G). The reader can check that Theorem 6.4
follows from Lemmas 6.2 and 6.3.

Theorem 6.4 For any graph G, min(P (G)′′) = V (Pared G) and, moreover,
Ω(P (G)′′) ∼= Pared G. 2
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From the dual of Proposition 6.1(3) we obtain that G
#−→ Pared G for any

graph G, and so G ' Pared G, which is Proposition 3.2 in [10].

7 The poset of intervals

Let P be any poset. Then Int P is the poset of all intervals [a, b] ⊆ P , ordered
by inclusion. It is shown in [13] that Int P is homeomorphic to P .

The minimal elements in Int P are the intervals of the form [a, a] and so
min(Int P ) can be identified with P . We will write [a, a] as [a]. We also have
max(Int P ) = { [x, X] | x ∈ min(P ), X ∈ max(P ), x ≤ X }. Hence Ω(Int P ) is
a graph with vertices { [a] | a ∈ P } with two vertices [a], [b] adjacent if there
is an interval [x, y] of P containing both a and b. That is, [a][b] ∈ E(Ω(Int P ))
if and only if a 6= b and {a, b} is both bounded above and below in P . In other
words, Ω(Int P ) is DB(P ), the double bound graph of P introduced in [9,4].
Two vertices [x, X], [y, Y ] in 0(Int P ) are adjacent whenever there is a ∈ P
that is both an upper bound of {x, y} and a lower bound of {X,Y }.

Since Int P op = Int P , we have that for any property α about P that implies
or is implied by a property β about Int P , the dual property of α also implies
or is implied by β.

Proposition 7.1 Let P be an atomized and coatomized poset and a ∈ P .
(1) If [a] is not dominated in Ω(Int P ), then a ∈ P ′ ∩ P ′′.
(2) If a ∈ P ′ ∩ P ′′ then [a]∗ is a clique in 0(Int P ).

PROOF. (1) follows from the fact that for all a ∈ P , the elements [lubP a∗]
and [glbP a∗] dominate [a] in Ω(Int P ). (2): Let a ∈ P ′ ∩ P ′′ and suppose
that [a]∗ is not a clique in 0(Int P ). Then there is an interval [x, X] with
x ∈ min(P ), X ∈ max(P ) that does not contain a, but intersects all maximal
intervals that contain a. This implies that x is a lower bound of a∗ and X is
an upper bound of a∗. But then we have x ≤ a ≤ X, a contradiction. 2

Proposition 7.2 If P is a strongly up–Sperner poset, then:
(1) Ω(Int P ) has no pair of distinct twins.
(2) If [a] is dominated in Ω(Int P ), then [a]∗ is not a clique in 0(Int P ).

PROOF. Suppose [a] is dominated by [b] in Ω(Int P ) ∼= DB(P ). If x ∈ a∗
then [x][b] ∈ E(Ω(Int P )), which implies x ≤ b, and so a∗ ⊆ b∗. The strongly
up–Sperner condition implies then that a ≤ b. From this, (1) follows. For (2),
suppose that [a] is dominated by [b] in Ω(Int P ) with a 6= b. Then a∗ ( b∗, so
we can take y ∈ b∗ − a∗. Let Y ∈ max(P ) such that a ≤ Y . Then a 6∈ [y, Y ],
but if a ∈ [x, X] with x ∈ min(P ), X ∈ max(P ), then b ∈ [x, X] ∩ [y, Y ].
Hence [a]∗ is not a clique. 2
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From Propositions 7.1 and 7.2 we obtain:

Corollary 7.3 If P is strongly up–Sperner and coatomized, and a ∈ P , the
following are equivalent:
(1) [a] is not dominated in Ω(Int P ),
(2) a ∈ P ′′,
(3) [a]∗ is a clique in 0(Int P ). 2

For the rest of the section, P = P(G) for G a graph. In this case, Int P is
up–Helly, and strongly up–Sperner.

The vertex–clique bipartite graph of G is defined as the graph BK(G) with
V (BK(G)) = V (G)∪V (K(G)), E(BK(G)) = {xC | x ∈ G, C ∈ K(G), x ∈ C }.
The edge graph E(G) (see [1]) has V (E(G)) = E(G) and two edges of G are
adjacent vertices in E(G) if they intersect or are opposite edges of a 4–cycle
in G. The vertex–clique bipartite graph was denoted in [1] as I(G).

The graph Ω(IntP(G)) ∼= DB(P(G)) has as vertices the complete subgraphs
of G and two distinct completes C, D are adjacent if C ∩D 6= ∅ and C ∪D
is complete. On the other hand 0(IntP(G)) has as vertices the pairs (x, C),
where x is a vertex of G and C is a clique of G with x ∈ C, and two distinct
pairs (x, C), (y, D) are adjacent if {x, y} ⊆ C ∩ D. That is, 0(IntP(G)) =
E(BK(G)). We will denote E(BK(G)) just as H(G).

By Proposition 5.1(3), we have P(G) ' IntP(G) ' 0(IntP(G)) = H(G), so:

Theorem 7.4 For any graph G, G ' H(G). 2

We now turn to the clique graph of H(G).

Proposition 7.5 For any graph G, K(H(G)) ∼= DB(P (G)′′).

PROOF. Theorem 3.3 gives an embedding Φ: K(H(G)) → Ω(IntP(G)) that
sends a clique in H(G), say C = {[x1, C1], . . . , [xn, Cn]} to a lower bound in
min(Int(P(G))), which in this case must be [∩Ci]. Conversely, if C ∈ P(G)′′,
then [C]∗ is a clique in H(G) by Corollary 7.3, so [C] = Φ([C]∗). 2

Theorem 7.6 For any graph G, K(H(G)) ' G.

PROOF. There is a poset map f : P(DB(P(G))) → P(G) sending the com-
plete {C1, . . . , Cn} in DB(P(G)) to ∪n

i=1Ci. For a fixed D ∈ P(G) we have
that F = f−1(P(G)≤D) = { {C1, . . . , Cn} ∈ P(DB(P(G))) | ∪n

i=1Ci ⊆ D } is
join contractible to {D}, since if {C1, . . . , Cn} ∈ F , then {C1, . . . , Cn} ∪ {D}
is a complete subgraph in DB(P(G)) and an element of F . By Theorem 2.5,
f is a homotopy equivalence, and the result then follows, since from Theo-
rem 3.3, we obtain that DB(P(G)) = Ω(IntP(G))

#−→ K(H(G)). 2
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By theorems 3 and 4 of [1], a graph G is dismantlable if and only if H(G) is
dismantlable, and G is clique–Helly if and only if H(G) is clique–Helly. The
operator K preserves clique–Hellyness ([5]) and dismantlability ([2]). Hence
we obtain a corollary of theorems 7.4 and 7.6:

Corollary 7.7 Any composition of graph operators T = Tn ◦ Tn−1 ◦ · · · ◦ T1

such that Ti ∈ {H, K ◦ H} for all i = 1, . . . , n, preserves clique–Hellyness,
dismantlability, and homotopy type. 2
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