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ON SELF-CLIQUE SHOAL GRAPHS

F. LARRIÓN, M.A. PIZAÑA, AND R. VILLARROEL-FLORES

Abstract. The clique graph of a graph G is the intersection graph K(G) of its (maximal)
cliques, and G is self-clique if K(G) is isomorphic to G. A graph G is locally H if the
neighborhood of each vertex is isomorphic to H. Assuming that each clique of the regular
and self-clique graph G is a triangle, it is known that G can only be r-regular for r ∈ {4, 5, 6}
and G must be, depending on r, a locally H graph for some H ∈ {P4, P2 ∪ P3, 3P2}. The
self-clique locally P4 graphs are easy to classify, but only a family of locally H self-clique
graphs was known for H = P2 ∪ P3, and another one for H = 3P2.

We study locally P2 ∪ P3 graphs (i.e. shoal graphs). We show that all previously known
shoal graphs were self-clique. We give a bijection from (finite) shoal graphs to 2-regular
digraphs without directed 3-cycles. Under this translation, self-clique graphs correspond to
self-dual digraphs, which simplifies constructions, calculations and proofs. We compute the
numbers, for each n ≤ 28, of self-clique and non-self-clique shoal graphs of order n, and also
prove that these numbers grow at least exponentially with n.

1. Introduction.

Our graphs are simple and, unless they clearly are not (as, e.g. P2 ∪ P3), also connected.
We deal mostly with finite graphs, but some infinite graphs are also considered. We will be
explicit about finiteness or infiniteness when needed. A clique of a graph G is a maximal
complete subgraph of G, or just its set of vertices, as we identify induced subgraphs with
their vertex sets. The clique graph of G is the intersection graph K(G) of the cliques of G,
and G is self-clique if G is connected and K(G) ∼= G. The study of self-clique graphs began
in [9] and has been pursued in [1–7,13–16]. A graph is locally H if the (open) neighborhood
N(v) of any vertex v ∈ G induces a subgraph isomorphic to H. We denote by Pn the path
graph on n vertices and by kPn the disjoint union of k copies of Pn.

This research was motivated by the paper [7], in which Chia and Ong propose the study of
those self-clique graphs whose cliques have all the same size. For n ≥ 2, they defined G(n)
as the class of all, not necessarily finite, self-clique graphs having only cliques of n vertices.
For n = 2 they proved that G(2) only contains the cycles Cn with n ≥ 4, the one-way infinite
path P∞ and the two-way infinite path (or infinite cycle) C∞. After this, [7] focuses into
G(3), a much tougher proposition. For our purposes, their key results [7, Thm.2, Cor.1] are
that any vertex v of a graph G in G(3) has, according to its degree, an open neighborhood
N(v) which can only be one of the graphs P2, P3, P4, P2 ∪ P3 or 3P2, and that any r-regular
graph in G(3) must satisfy r ∈ {4, 5, 6}. In particular, a regular graph in G(3) must be
locally H for some H ∈ {P4, P2 ∪ P3, 3P2}.
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The 4-regular graphs in G(3), i.e. the locally P4 graphs in G(3), were classified in [7]. Hall
had shown in [11] that the locally P4 graphs are just the squared cycles C2

∞ and C2
n for all

integers n ≥ 7. Being self-clique, they are all in G(3), as implied by [7, Thm.4]. As for the
remaining two cases (r = 5, 6) of regular graphs in G(3), only a family of examples was given
for each type, and the question was raised in [7, §6] whether they could also be classified.

This work is devoted to the study of 5-regular graphs in G(3). In other words, we investigate
which locally P2∪P3 graphs (to be renamed shoal graphs in the next section) are self-clique.

After a preliminary study of locally P2 ∪ P3 graphs in §2, we show in §3 that their clique
graphs are obtained by just flipping the diagonals of all their diamonds.

Hall [11] had proved by examples the existence of locally P2 ∪P3 graphs, and Chia an Ong’s
family of self-clique graphs of this type is a proper subfamily of Hall’s [7, §3]. We shall prove
that all graphs in Hall’s family (which as far as we can tell were all the previously known
locally P2∪P3 graphs) are indeed self-clique. In fact, Hall’s graphs are “orientable”, and our
geometrical proof also works for the corresponding “non-orientable” analogues, see our §4.

In §5 we translate our problem into that of finding the self-dual fishy digraphs (i.e. balanced
orientations of quartic graphs without directed 3-cycles). This greatly simplifies the analysis.
The fishy digraph D associated to a locally P2 ∪ P3 graph G has half the number of vertices
of G, and its underlying graph is 4-regular, while G is 5-regular. Self-duality for D is simpler
than self-cliqueness for G. Quartic graphs have been much more studied than locally P2∪P3
graphs, and there are available catalogs and computer programs to work with them.

Using fishy digraphs we give in §6 two new and easy families of locally P2 ∪ P3 graphs, all
of them self-clique. We now have examples of each even order greater than 12, which are all
possible orders. Up to this point it could conceivably be thought that every locally P2 ∪ P3
graph is self-clique. But our approach also simplified the exhaustive calculation of small
examples by hand. This yielded that up to order 18 there are 16 locally P2 ∪ P3 graphs,
all of them self-clique, but of order 20 there are 114, and only 60 of them are self-clique.
We continued these calculations using a computer and found that up to order 28 there are
3,536,172 locally P2 ∪ P3 graphs and precisely 33,108 of them are self-clique (see §7).

We shall prove in §8 that the number of self-clique locally P2 ∪P3 graphs and the number of
non-self-clique locally P2∪P3 both grow at least exponentially with the order. Also, that the
numbers of self-clique and non-self-clique locally P2∪P3 graphs of order ℵ0 is the cardinality
of the continuum. It shall be quite clear that the examples constructed in this paper are
just a puny fraction of the self-clique locally P2 ∪P3 graphs. In our view, these results show
that self-clique locally P2 ∪ P3 graphs are unclassifiable. This would solve in the negative
the classification problem of 5-regular graphs in G(3) posed in [7, §6, Question (i)]. But of
course a formal proof of unclassifiability would require a formal definition of classifiability.

A vertex v of a graph G (i.e. v ∈ G) is universal if v is a neighbor of every other vertex
in G. A cone is a graph G having a universal vertex, called also an apex of G. Whenever
we speak of a diamond in G we mean an induced one. By X \ Y we denote difference of
sets, while G−H is a graph difference. A digraph is an oriented graph: the graph must be
simple and each edge has to be oriented in exactly one direction, i.e. our digraphs have no
loops, parallel arrows or anti-parallel arrows. The opposite or dual Dop of a digraph D has
the same vertices as D, but all the arrows reversed: i→ j in Dop if, and only if, j → i in D.
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2. Shoals, Fishes, Heads and Tails

In a locally P2 ∪ P3 graph G, the closed neighborhood N [v] of each vertex v ∈ G induces a
subgraph as the graph ϕ in Figure 2.1, which we call the fish of v. The triangle {v, x, y} is
the tail (of the fish) of v, and the diamond {v, a, b, c} is the head (of the fish) of v. By dint
of using these terms we ended up saying that a locally P2 ∪ P3 graph is a shoal graph.

δ :

x

y

c

a

b

c

d

b

a

ϕ :
v

Figure 2.1. A fish ϕ and a diamond δ in a shoal graph G.

In the next three statements G is a shoal graph, and δ, δ′ denote diamonds of G.

Lemma 2.1. No edge of δ forms a triangle with a vertex x ∈ G \ δ.

Proof. Let the vertices of δ be labeled a, b, c and d as in Figure 2.1. If x is adjacent to both
a and b, then the (open) neighborhood NG(b) contains a P4, a contradiction. By symmetry,
only the triangle {x, b, d} remains possible, but with it NG(b) would contain a K1,3. �

The head of a degree 3 vertex of δ (like b or d in Figure 2.1) is clearly δ. We also have:

Lemma 2.2. The tail of a degree 2 vertex of δ is the triangle of δ incident with that vertex
(like {a, b, d} for a in Figure 2.1).

Proof. Otherwise {b, d} would be part of the head of a, contradicting Lemma 2.1. �

A family of (induced) diamonds of a graph is well assembled if any two of them that meet
do so at just one vertex, and this vertex is incident to the diagonal of one of the diamonds
but not to that of the other. All the diamonds of a shoal graph are well assembled:

Proposition 2.3. |δ ∩ δ′| ≤ 1 if δ 6= δ′, and {dδ(v), dδ′(v)} = {2, 3} if δ ∩ δ′ = {v}.

Proof. Let I = δ ∩ δ′. Assume first that |I| = 3. By Lemma 2.1, I is not a triangle, so we
must have (without loss of generality) I = {a, c, d} (see δ in Fig. 2.1) and δ′ = {a, x, c, d}.
But then {a, x, c, b} is a C4 in NG(d). Assume now that |I| = 2. Again by Lemma 2.1, I is
not an edge. But then I = {a, c} and each of a and c would have two tails by Lemma 2.2,
a contradiction. Last claim: If δ ∩ δ′ = {v}, one of δ and δ′ must contain the tail of v, and
the other be its head, so the set of the degrees of v in δ and δ′ must be {2, 3}. �

We shall say that a shoal graph G is diamantine if every triangle of G is contained in some
(necessarily unique) diamond. In the infinite case, our problem will be reduced in §3 to the
study of diamantine shoal graphs. In the finite case, this is no restriction at all:

Proposition 2.4. Let G be a finite shoal graph, then:
(1) G is diamantine, and
(2) the order of G is twice the number of its diamonds, so it is even.
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Proof. Let n be the order, t the number of triangles not contained in any diamond and d
the number of diamonds. Note that every diamond contributes two heads (one for b and
one for d in Figure 2.1) and two tails (for the vertices a and c). Likewise, any triangle not
contained in a diamond contributes three tails. Since each vertex has exactly one head and
one tail, we have exactly n heads and n tails, therefore 2d = n = 2d+ 3t, so t = 0. �

Remark. The hypothesis that G is finite is crucial in Proposition 2.4. An infinite counterex-
ample can be constructed as in Figure 2.2, in which the first three steps are shown. In each
further step one attaches a diamond to every vertex whose neighborhood is not yet P2 ∪ P3
in such a way that it achieves this neighborhood.

... 

Figure 2.2. Finiteness is crucial in Prop. 2.4.

Theorem 2.5. A graph G is a diamantine shoal graph if, and only if, the following four
conditions are satisfied:

(1) Each vertex of G belongs to two diamonds.
(2) Each edge of G is contained in some diamond.
(3) Each triangle of G is contained in some diamond.
(4) The family of all diamonds of G is well assembled.

Proof. If G is a diamantine shoal graph (3) holds, we know (4) by Proposition 2.3, and
(1) and (2) follow from (3) for shoal graphs. Assume now that the conditions hold, and
take a vertex v ∈ G. By (1), v belongs to two diamonds δ and δ′, and by (4), δ ∩ δ′ = {v}
and v lies in the diagonal of (say) δ but not in that of δ′. Thus NG[v] contains a fish. These
five vertices are all the neighbors of v: any other would force by (2) the existence of a third
diamond δ′′ meeting both δ and δ′ in v, which is impossible by (4). As in Figure 2.1, let
{v, x, y} be the triangle of δ′ containing v and let δ = {v, a, b, c}. Any edge from {x, y} to
{a, b, c} would produce a triangle, and then by (3) a third diamond δ′′, meeting δ and δ′ in
at least two vertices, contradicting (4). Of course, a is not adjacent to c because δ is an
induced diamond. Therefore G is a shoal graph, and it is diamantine by (3). �

Remark. Some easy to see versions of Theorem 2.5 will be used: Condition (1) could be
replaced with “Each vertex of G belongs to exactly two diamonds”. Condition (2) could
be replaced with “G is the graph union of its diamonds”, but condition (1) would be still
needed. Condition (2) could also be replaced, owing to condition (4), with “Each edge of G
is contained in a unique diamond” and, owing to condition (3), with “Each edge of G is
contained in a triangle”. Uniqueness could also be asked for the diamond in condition (3).
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3. The Clique Graph and the Flipped Graph

Clique-Helly graphs, introduced by Escalante in [9] are, from the viewpoint of clique graphs,
the most widely studied and better understood interesting family of graphs. However, as
we shall see, even for very restricted subfamilies of clique-Helly graphs there are difficult
unsolved problems. A graph G is clique-Helly if the set of cliques of G satisfies the Helly
property: every collection of pairwise intersecting cliques has a non-empty total intersection.

Using the Dragan-Szwarcfiter characterization [8,24] of clique-Hellyness (that each extended
triangle is a cone) we see that any shoal graph G is clique-Helly. Indeed, let τ be a triangle
of G. The extended triangle τ̂ = {v ∈ G | |NG(v) ∩ τ | ≥ 2} is just τ , if τ is not contained in
a diamond, or else, by Lemma 2.1, the unique diamond δ that contains τ , which is a cone.

A vertex v in a graph G is dominated if NG(v) is a cone. By [9, Satz 3], a clique-Helly
graph G has no dominated vertices if, and only if, K2(G) ∼= G (the “if” part is invalid in the
infinite case, but we shall only use the “only if” part; also remember that our main interest
lies on finite graphs). As their neighborhoods are disconnected, shoal graphs do not have
dominated vertices. Therefore we have:

Proposition 3.1. If G is a shoal graph, K2(G) ∼= G. �

Thus shoal graphs verge closely on self-cliqueness. In the language of [3], G is 2-self-clique if
K2(G) ∼= G but K(G) 6∼= G. We just need to distinguish between self-clique and 2-self-clique
shoal graphs. The general characterizations known for a graph to be clique-Helly and self-
clique (that it has a quasi-symmetric clique matrix [3], or a self-dual vertex-clique bipartite
graph [15]) do not seem to help us to classify self-clique shoal graphs.

If the shoal graph G has a triangle τ not contained in any diamond, τ is a vertex of degree 6
in K(G) (see Figure 2.2), so K(G) is not a shoal graph. But then G cannot be self-clique.
Thus, in order to study self-clique shoal graphs, we can restrict to diamantine shoal graphs.
As previously observed, in the finite case this is no restriction at all by Proposition 2.4.

By flipping the diagonal of the diamond δ in Figure 2.1 we mean removing the edge bd and
replacing it with ac. The flipped graph of a diamantine shoal graph G is the graph F(G)
obtained by flipping the diagonals of all the diamonds of G. As vertex sets, the diamonds of
F(G) are the same as those of G, and it is then clear that F(G) still satisfies the conditions
of Theorem 2.5 and, therefore, F(G) is again a diamantine shoal graph.

Theorem 3.2. Let G be a diamantine shoal graph. Then K(G) is a diamantine shoal graph
of the same order as G and, furthermore, K(G) ∼= F(G).

Proof. The cliques of G are clearly its triangles. Any vertex has a uniquely defined tail,
and any triangle is the tail of some unique vertex by Theorem 2.5 and Lemma 2.2. Thus,
we have a bijection τ : V (G)→ V (K(G)) which sends each v ∈ G to its tail τ(v) ∈ K(G).

That K(G) is a diamantine shoal graph can be verified by observing Figure 3.1, in whose first
part all the triangles meeting τ(v) and one that does not are depicted. These seven triangles
are all distinct and are connected as in the figure, save for the fact that the uppermost
(or the bottommost) edge could be the same that the rightmost one, so τ(x) (or τ(y))
could form a diamond with τ(b). Thus the neighbors of τ(v) in K(G) do induce a fish as
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F(K(G))K(G)G

z

c

a

b

x

y

v

τ(a)

τ(y)

τ(z) τ(v) τ(b)

τ(x)

τ(c) τ(v)

τ(x) τ(c)

τ(y) τ(a)

τ(b)

τ(z)τ(v)

τ(x) τ(c)

τ(y) τ(a)

τ(b)

τ(z)

Figure 3.1. Surroundings of v in G and of τ(v) in K(G) and F(K(G)).

depicted in the second graph of the figure, which shows both the diamonds containing τ(v)
in K(G). Considering the third part of the figure we see that the vertex bijection τ is a
graph isomorphism τ : G → F(K(G)). As F2(H) = H for each diamantine shoal graph H,
the same bijection τ is also an isomorphism τ : F(G)→ K(G). �

4. Hall Shoal Graphs

As far as we know, shoal graphs G were first shown to exist by Hall in [11, 4.13]. He gave an
infinite graph H̃ in the plane (see Figure 4.1) and pointed out that it “can be rolled in many
different ways onto the surface of a torus for finite G and onto the the surface of an infinitely
extended cylinder for infinite G.” Allowing for the also possible surfaces of the Klein bottle
and the twisted cylinder (which topologically, but not geometrically, is a borderless Möbius
strip), we will investigate these examples, to be called Hall shoal graphs in this work. We
refer to [12,22,23] for terminology and background results.

Figure 4.1. The infinite planar Hall shoal graph H̃ (which is clearly diamantine).

The infinite collection of self-clique shoal graphs given in [7, Prop.2] is properly contained in
Hall’s family. We shall prove in this section that every Hall shoal graph is self-clique.

Let H be a Hall shoal graph. Without prior reference to any surface, just let p : H̃ → H
be a graph morphism such that all the restrictions p| : NH̃ [ṽ]→ NH [p(ṽ)] are isomorphisms.
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Thus, p is a local isomorphism (which is onto by connectedness) and this is just what we
need for H to be a diamantine shoal graph which is a quotient of H̃. Local isomorphisms of
graphs are the same as triangular covering maps (see [12]) and this permits us to see p as a
topological covering map: attaching a 2-dimensional cell to each triangle of both H̃ and H
we obtain two topological spaces (the geometric realizations of the simplicial complexes of
triangles, edges and vertices) and thus p : H̃ → H, or rather its geometric realization, if you
will, becomes a topological (piecewise linear, in fact) covering map.

Each vertex ṽ ∈ H̃ is contained in two diamonds and two induced quadrilaterals. As no
local isomorphism identifies vertices at a distance less than 4, the nine vertices encompassed
by these four subgraphs induce a subgraph Q of H̃ such that the restriction p| : Q→ p(Q) is
an isomorphism onto an induced subgraph of H. Thus, attaching 2-dimensional cells to the
induced quadrilaterals of H̃ and also to their images under p in H, H̃ becomes the plane R2,
H changes into some surface S, and p extends to a topological covering map p : R2 → S.

Identifying the vertices of H̃ with the points of the integral lattice Z ⊕ Z we can, as in
Figure 4.1, consider H̃ drawn in R2 as the integral grid graph with some extra diagonals.
As R2 is simply connected, our topological covering map p : R2 → S is regular [22, Chap.2]:
there is a group Γ of self-homeomorphisms of R2 such that S is homeomorphic to the quotient
space R2/Γ and we can identify p : R2 → S with the natural projection p : R2 → R2/Γ. For
each γ ∈ Γ we have γ(Z ⊕ Z) = Z ⊕ Z, and γ also sends affinely the (drawn) edges of H̃
into (drawn) edges of H̃ because p ◦ γ = p and p is piecewise linear. Therefore each γ ∈ Γ
restricts to a rigid automorphism of the drawn graph H̃ ⊆ R2, and Γ itself can be taken
to be a group of isometries of the Euclidean plane R2. Since the quotient space R2/Γ is a
surface, the group Γ must be discontinuous and fixed point free, so it contains no reflections
or non-trivial rotations and can be generated by one or two of its elements [23, §2.5].

At the purely combinatorial level, the restrictions of the elements of Γ to Z⊕Z give us a group
(denoted also by Γ) of automorphisms of the graph H̃ such that H ∼= H̃/Γ and our original
graph morphism p : H̃ → H can be identified with the natural projection p : H̃ → H̃/Γ.
Since p is a triangular covering map, the group Γ ≤ Aut(H̃) is admissible in the sense that,
apart from the identity, each γ ∈ Γ satisfies dH̃(v, γv) > 3 for all v ∈ H̃. For ease of
expression it will be best not to distinguish the combinatorial, topological and geometric
levels anymore. We quickly describe the four non-trivial cases for the possible groups Γ:

The translations of H̃ are those translations of Z ⊕ Z which take the origin to a vertex in
2Z⊕2Z; they are defined by the addition of this vertex, and can be identified with it. Toroidal
Hall shoal graphs are of the form H̃/Γ where the translation group Γ = 〈t1, t2〉 ≤ Aut(H̃)
is admissible and the translations t1, t2 are independent. The first two parts of Figure 4.2
show fundamental domains for Γ = 〈t1, t2〉 when the translations ti are, in the obvious sense,
t1 = t(4,0) and t2 = t(0,4) or t2 = t(2,4). To obtain the corresponding Hall shoal graphs, we
identify opposite sides of the domain so as to form a torus. (White vertices are “repeated”.)

The only glide reflections in Aut(H̃) have a horizontal, vertical or slanted (±45◦) mirror
that passes through some vertex. The associated translation must be in (2Z + 1) ⊕ 0 or in
0 ⊕ (2Z + 1) in the first two cases, or be of the form (x, y) 7→ (x ± a, y + a) with a ∈ 2Z
in the other two. A Hall shoal graph embedded in the Klein bottle can always be obtained
as H̃/Γ, where the admissible group Γ = 〈t, g〉 ≤ Aut(H̃) is generated by a translation t
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b: c:a:

Figure 4.2. Fundamental domains for three admissible subgroups of Aut(H̃).

and a glide reflection g in Aut(H̃) in such a way that t and the mirror of g are perpendicular
(and Γ is admissible). If Γ were generated by two glide reflections g1 and g2, using g1g2
and g2 we would get our “asymmetric” presentation. The third part of Figure 4.2 shows a
fundamental domain for Γ = 〈t, g〉 when t = t(0,4) and g(x, y) = (x+5,−y). Here we identify
the horizontal sides orientably and the vertical ones non-orientably so as to form a Klein
bottle.

If the admissible group Γ ≤ Aut(H̃) is generated by just one translation or glide reflection,
the Hall shoal graph H̃/Γ is infinite and can be embedded in the cylinder or the twisted
cylinder. We are now ready to prove:

Proposition 4.1. Every Hall shoal graph is self-clique.

Proof. Let H = H̃/Γ be a Hall shoal graph, where Γ ≤ Aut(H̃) is admissible. By
Theorem 3.2, it will be enough to show that H ∼= F(H) (= F(H̃)/Γ). For the planar Hall
shoal graph H̃, corresponding to Γ = 1, there are many isomorphisms to the flipped graph.
The central inversions in the vertices v ∈ H̃ are well suited to our proof. If we put the origin
at v, the central inversion in v is the isomorphism c : H̃ → F(H̃) that sends each u ∈ H̃
to c(u) = −u. If Γ is not trivial, c still induces an isomorphism c̄ : H → F(H) because c
normalizes Γ. This means that cΓc−1 = Γ, or rather (as c−1 = c) that cΓc = Γ, as we will
show now.

If Γ = 〈t1, t2〉 is generated by translations, we just note that if t : Z⊕ Z→ Z⊕ Z is defined
by t(x, y) = (x+ a, y + b), then ctc = t−1, and therefore cΓc = 〈ct1c, ct2c〉 =

〈
t−1
1 , t−1

2

〉
= Γ.

If Γ = 〈t, g〉 is generated by the translation t and the glide reflection g, we put the origin
at a vertex in the mirror of g. Then g(x, y) = (x + a,−y) if the mirror is horizontal and
g(x, y) = (y + a, x + a) if it is slanted at 45◦ (the other two cases are symmetrical). Again
we have that cgc = g−1, and therefore cΓc = 〈ctc, cgc〉 = 〈t−1, g−1〉 = Γ.

In the remaining cases of the infinitely extended cylinder or twisted cylinder the group Γ is
cyclic and the above arguments also show that cΓc = Γ. �

5. The Digraph of Diamonds and the Graph of Arrows.

The digraph D(G), which we associate to each diamantine shoal graph G, is the “tails-to-
heads” (or “fish-forward”) orientation of the intersection graph of the diamonds of G. In
detail, the vertices of D(G) are the diamonds δ of G, and there is an arrow in D(G) from a
diamond δ1 to another δ2 if they intersect in a vertex of G which lies in the diagonal of δ2.
Recall that in an r-regular digraph the in-degree and out-degree of each vertex are both r.
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Proposition 5.1. The digraph of diamonds D = D(G) associated to a diamantine shoal
graph G is always 2-regular and never has a directed 3-cycle.

Proof. Let δ be any vertex ofD. We know that δ intersects precisely 4 other diamonds ofG,
one at each of its vertices. Since the diamonds of G are well assembled, two of these vertices
of D send an arrow to δ, and the other two receive an arrow from it, so d−D(δ) = d+

D(δ) = 2.
Any directed 3-cycle δ1 → δ2 → δ3 → δ1 in D would entail an arrangement of these three
diamonds in G as in the following figure,

but then G would not be a shoal graph, and this contradiction finishes the proof. �

We say that a digraph D is fishy if it is 2-regular and has no directed 3-cycles. Thus, by
Proposition 5.1 the digraph of diamonds of a diamantine shoal graph is always fishy.

Going the other way around, to any fishy digraph D we associate its graph of arrows G(D).
The vertices of G(D) are the arrows of D, and for each vertex x ∈ D we make adjacent in
G(D) any two distinct arrows f, g ∈ A(D) that go into or away from x, save for the case in
which both f and g go away from x. The four arrows incident to x in D induce a diamond
in G(D): the diamond of x, denoted by �(x).

Theorem 5.2. If D is a fishy digraph, G(D) is a diamantine shoal graph.

Proof. We prove that G = G(D) satisfies the conditions (1) to (4) of Theorem 2.5.

(1): By definition, each arrow f : x→ y of D, as a vertex of G, lies in both �(x) and �(y).

(2): Also by definition, {f, g} ∈ E(G) implies that {f, g} ⊆ �(x) for the vertex x ∈ D
which is incident to both f and g.

(3): Let τ = {f, g, h} be a triangle in G, and consider vertices x, y, z ∈ D with f, g ∈�(x),
f, h ∈ �(y) and g, h ∈ �(z). If x 6= y, we can assume that f : x → y, but then we must
have g : z → x because f and g are adjacent, and h : y → z because h and g are adjacent,
but then f , h and g are the arrows of an directed 3-cycle in D. This contradiction implies
that x = y = z, and then we conclude that τ = {f, g, h} ⊆�(x).

(4): If the vertices x, y ∈ D are distinct, the diamonds �(x) and �(y) can share at most
one vertex of G: an arrow between x and y, when it exists. If f : x → y, then f lies in the
diagonal of �(y) but not in that of �(x). Thus to complete our proof we only need to show
that the diamonds of G are all of the form δ = �(x) for some vertex x ∈ D. Let then δ be
any diamond of G, and call τ1, τ2 its two triangles. We know by our above proof of (3) that
there exist vertices x, y ∈ D with τ1 ⊆ �(x) and τ2 ⊆ �(y). But |τ1 ∩ τ2| = 2 implies that
|�(x) ∩�(y)| ≥ 2, so we conclude that x = y and δ = �(x). Thus all diamonds of G are
of the required form, and our proof is complete. �

Straightforward verifications show the following:
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Theorem 5.3. Let G,G′ be diamantine shoal graphs, and D,D′ fishy digraphs. Then:
(1) G(D(G)) ∼= G. In particular G ∼= G′ if, and only if, D(G) ∼= D(G′).
(2) D(G(D)) ∼= D. In particular D ∼= D′ if, and only if, G(D) ∼= G(D′). �

Using Theorem 3.2 and the fact that D(F(G)) = D(G)op for any diamantine shoal graph G,
we can now describe the effect of the clique graph operator at the level of the fishy digraph
of diamonds:

Theorem 5.4. Let G be a diamantine shoal graph. Then D(K(G)) ∼= D(G)op. �

Theorems 5.3 and 5.4 provide an exact translation of our problem into the realm of fishy
digraphs: modulo the polynomially feasible computations of the fishy digraph D or the graph
of arrows G, to determine the self-clique (K(G) ∼= G) shoal graphs (which are all diamantine)
is the same as determining the self-dual (Dop ∼= D) fishy digraphs.

Proposition 5.5. Let H be a Hall shoal graph and D = D(H) its digraph of diamonds.
Then the underlying graph of D is triangleless.

Proof. Assume to the contrary that one has a triangle δ → δ′ → δ′′ ← δ in D. Let
H = H̃/Γ, where Γ ≤ Aut(H̃) is admissible. Then we must have in H̃, modulo some
rotation or reflection, a situation as in the following figure,

w

w′

u

v

δ̃ δ̃′′

δ̃′

δ̃′′′

where δ̃, δ̃′ and δ̃′′ are liftings of δ, δ′ and δ′′, and also δ̃′′′ is a lifting of δ. Thus, some γ ∈ Γ
must send δ̃ into δ̃′′′. The diagonal {u, v} of δ̃ must go to the diagonal {w,w′} of δ̃′′′, so
γ(v) ∈ {w,w′}, but d(v, w) = 3 = d(v, w′), and the group Γ can not be admissible. �

6. Two New Families

Our families in this section enlarge the set of known shoal graphs and also illustrate the way
in which fishy digraphs help to find them.

A variant of Hall’s family

Figure 6.1 (left) shows the fishy digraph D(H̃) of the Hall shoal graph H̃ of Figure 4.1.
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Figure 6.1. The infinite fishy digraphs D(H̃) and D(J̃).

Figure 6.2. The infinite shoal graph J̃ .

A glance at D(H̃) immediately suggests the simpler and related infinite fishy digraph D(J̃)
shown in the right. Using the graph of arrows construction one easily finds the corresponding
diamantine shoal graph, which is the infinite graph J̃ depicted in Figure 6.2.

Even if J̃ is not planar, it behaves in quite the same way as H̃. Its graph automorphisms
are just the restrictions of those isometries of the Euclidean plane which apply into itself
its drawing in Figure 6.2. An easy way to see this is to visualize the vertices of the fishy
digraph D(J̃) at the crossing points of pairs of edges of J̃ : the automorphisms of D(J̃) are
much clearer.

Therefore any shoal graph J which is a quotient of J̃ is of the form J ∼= J̃/Γ for some
admissible group Γ ≤ Aut(J̃) needing at most two generators and having no rotations nor
reflections. Now there are two kinds of glide reflections: the mirror has to be horizontal
but it can either pass through a vertex (with odd translation) or through the midpoint of
a vertical edge (with even translation). When one generator of Γ is a glide reflection, the
central inversion in a vertex or in the crossing point of two edges of J̃ will normalize Γ. We
conclude that J ∼= J̃/Γ is self-clique for any admissible group Γ ≤ Aut(J̃).

In Figure 6.3 we show three fundamental domains for admissible subgroups Γ ≤ Aut(J̃).
The first two are meant to be translation groups, and the third contains a glide reflection
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whose mirror passes trough vertices. While the graphs of order 20 in figures 4.2(c) and
6.3(c) are not isomorphic, it is interesting to notice that the graphs in 4.2(a) and 6.3(a) are
isomorphic, and that also those in 4.2(b) and 6.3(b) are so. However, this is very infrequent:
the graph H in Hall’s family can be isomorphic to a graph J in our new family only if some
vertex in D(H̃) was identified with another at distance four while constructing H.

a: b: c:

Figure 6.3. Fundamental domains for three admissible subgroups of Aut(J̃).

Circulant digraphs

By Proposition 2.4 the order of any finite shoal graph is even; we shall see soon (Proposi-
tion 7.7) that this order must also be at least 14. We will introduce here a family of circulant
fishy digraphs that will yield shoal graphs of every possible order, all of them self-clique. In
combination with a simple gluing operation, this new family will also lend itself, in Section 8,
to the construction of large quantities of shoal graphs, both self-clique and non-self-clique.

Given n ≥ 7, consider two integers 1 ≤ a < b ≤ n − 1 and interpret them as modulo n
residue classes in Zn. For the infinite case, if n =∞ (or n = ℵ0) let us agree that Zn stands
for the ring of integers Z. Assume, further, that the following conditions hold in Zn:

2a, 2b, 3a, 3b 6= 0,
a+ b, 2a+ b, a+ 2b 6= 0, and
a, b generate Zn as a group.

For instance a = 1 and b = 2 always work, but there are other possibilities.

The circulant digraph ~Cn(a, b) has Zn as vertex set, and there is an arrow i→ j in ~Cn(a, b)
if, and only if, j − i ∈ {a, b}. Owing to the conditions we have imposed on the jumps a
and b, this is a fishy digraph (connected by the last condition). The two arrows leaving any
vertex v are v → v + a and v → v + b, and those arriving at v are v− a→ v and v− b→ v.
The vertex map ϕ : ~Cn(a, b)→ ~Cn(a, b)op, given by ϕ(i) = -i, is an isomorphism, so ~Cn(a, b)
is self-dual. Indeed, i→ j in ~Cn(a, b) iff j − i ∈ {a, b} iff (-i)− (-j) ∈ {a, b} iff (-j)→ (-i) in
~Cn(a, b) iff (-i)→ (-j) in ~Cn(a, b)op. Therefore we have:

Proposition 6.1. For each n ≥ 7 there is a self-clique shoal graph G of order 2n.

Proof. Just take G to be the graph of arrows G = G(~Cn(1, 2)) as in Section 5. �

Let us remark that the examples in figures 4.2 and 6.3 have circulant fishy digraphs of
diamonds: these are ~C8(1, 5), ~C8(1, 3) and ~C10(1, 4) for Figure 4.2, and ~C8(1, 5), ~C8(1, 3) and
~C10(1, 6) for Figure 6.3. On the other hand, of the 12 digraphs in Figure 7.3 only the first
one will be circulant. Notice also that for the connectedness of ~Cn(a, b) none of a, b needs to
be a generator of Zn: what is needed is that a and b jointly generate Zn (see Figure 6.4).
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Figure 6.4. The circulant digraph C12(2, 3).

7. Small Shoal Graphs

We will study the smallest shoal graphs, so here everything will be finite. By Section 5 we
can study shoal graphs (diamantine by Proposition 2.4) through their fishy digraphs.

The underlying graph F of any fishy digraph is 4-regular, so we can start with such an F
and look for its fishy orientations. In particular, we need balanced orientations of F . These
always exist due to the classical Euler Theorem, as any Eulerian circuit in F produces
one such orientation (and all of them could be obtained this way). If F is triangleless, its
balanced orientations are all fishy, but certain arrangements of triangles of F can even bar
the existence of fishy orientations for it.

In the next lemmas F will be the underlying graph of a fishy digraph D. A degree two
vertex v of a subgraph S of F will be said to be a pitcher (resp. a runner, resp. a catcher)
of S if, with the orientation of D, d+

S (v) = 2 (resp. d+
S (v) = 1, resp. d+

S (v) = 0). The ears of
a diamond of F are its vertices of degree 2; they are never runners of δ and, furthermore:

Lemma 7.1. In any diamond δ of F one ear is a pitcher and the other a catcher. �

Trivial as it is, Lemma 7.1 and its following immediate consequences will be rather useful.
The 3-sun is the graph with degree sequence 2,2,2,4,4,4. The squared path graph P 2

n has
vertices 1, . . . , n, and its directed orientation has arrows {x→ y | y − x ∈ {1, 2}}.

Lemma 7.2. No edge is contained in three triangles of F . �

Lemma 7.3. There is no tetrahedron in F . �

Lemma 7.4. There is no induced 3-sun in F . �

Lemma 7.5. If n ≥ 5, every P 2
n in F is directed in D. �

Lemma 7.6. There is no induced 4-wheel in F . �

We begin by finding the minimal possible order of a shoal graph.

Proposition 7.7. Every shoal graph G has at least 14 vertices.
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Proof. The unique quartic graph of minimal order is K5, but this does not have fishy
orientations by Lemma 7.3. The only quartic graph with six vertices is the octahedron,
which does not have fishy orientations by Lemma 7.6. �

The shoal graph of order 14:

Proposition 7.8. There is a unique (ergo self-clique) shoal graph with 14 vertices.

Proof. The only two 4-regular graphs of order 7 are the complements of C3 ∪ C4 and C7:

The first one violates Lemma 7.2, and by Lemma 7.5 the second has essentially one fishy
orientation: ~C7(1, 2). The corresponding shoal graph G is drawn in Figure 7.1, where each of
the 7 diamonds is an isosceles trapezium and its diagonal is dashed for easier recognition. The
up-down reflection sendsG to F(G). Note thatG is not a Hall shoal graph by Proposition 5.5,
but belongs to the family of circulant shoal graphs studied in our Section 6. �

Figure 7.1. The smallest shoal graph.

Shoal graphs of order 16:

Proposition 7.9. There are exactly three shoal graphs with 16 vertices, all self-clique.

Proof. The following are the six quartic graphs with eight vertices. They are Q6, Q9, Q7,
Q5, Q8, Q10 in [20], or #1, #2, #5, #4, #3, #6 in Meringer’s list [18]:

The first violates lemmas 7.2 and 7.4, and the second violates Lemma 7.3, so they do not
have fishy orientations. Using twice Lemma 7.1 one sees that the third graph does not have
fishy orientations, and with two applications of Lemma 7.5 one shows the same for the fourth
graph.
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Up to isomorphy the fifth graph has, by Lemma 7.5, a unique (hence self-dual) fishy orien-
tation: it is the circulant digraph ~C8(1, 2). The corresponding shoal graph, as well as that
in Proposition 7.8, is not a Hall shoal graph by Proposition 5.5.

Our last quartic is the complete bipartite graph F = K4,4. Denote its parts by A = {0, 2, 4, 6}
and B = {1, 3, 5, 7}. In order to determine a fishy orientation of F it suffices to indicate,
for any vertex i ∈ A, its ex-neighborhood Bi ⊆ B, since the in-neighborhood is then the
complement B \Bi. Up to symmetry there are just two inequivalent possibilities:

• B0 = {1, 3}, B2 = {3, 5}, B4 = {5, 7}, B6 = {7, 1}, and

• B0 = B2 = {1, 3} and B4 = B6 = {5, 7}.

These give us the circulant digraphs ~C8(1, 3) and ~C8(1, 5) which, as remarked earlier, are the
fishy digraphs of the second and first examples of Hall shoal graphs in Figure 4.2. �

Shoal graphs of order 18:

We shall now consider the quartic graphs with nine vertices, which are depicted in Figure 7.2.
We will denote them by F1, . . . , F16. They are Q21, Q25, Q14, Q16, Q19, Q11, Q12, Q15,
Q23, Q13, Q17, Q18, Q22, Q26, Q20 and Q24 in [20], or #1, . . . , #16 in Meringer’s list [18],
only that we have moved forward the sixth to put it after the ninth (thus making it the new
ninth). Also our pictures are mostly Meringer’s, we have only redrawn F10 and F11.

The twelve fishy orientations afforded by these sixteen quartics of order nine will be depicted
later in Figure 7.3.

19

4

8

6
5

3

2

7

Figure 7.2. The sixteen quartic graphs F1, . . . , F16 and a numeration of their vertices.

Our first eight quartic graphs F1, . . . , F8 do not admit fishy orientations:

This is immediate for the first 5 quartics: F1 violates Lemma 7.3. Both F2 and F3 violate
Lemma 7.2. F4 violates both Lemma 7.3 and Lemma 7.6. Finally, F5 violates Lemma 7.4.

Easy applications of lemmas 7.1 and 7.5 show that neither of F6, F7 or F8 admits any fishy
orientation: If, for instance, F8 admits one, then by Lemma 7.1 we can assume (if D is fishy,
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so is Dop) that 8 is the pitcher and 2 the catcher of the lower diamond, but this forces arrows
2→ 3 and 2→ 7, so the upper P 2

5 can not comply with Lemma 7.5.

Now we will show that each of the next four quartic graphs F9, . . . , F12 admits a unique (up
to isomorphy) fishy orientation, giving rise to the first four digraphs D1, . . . , D4 in Figure 7.3.
Every isomorphism of digraphs gives one between their underlying graphs, and any digraph
shares the underlying graph with its dual, so we will obtain automatically that D1, . . . , D4
are not isomorphic and also that they are self-dual. Note, however, that the first six and the
last three of the twelve digraphs in Figure 7.3 are clearly self-dual, as they are sent to their
duals by the left-right reflection µ = (1 9)(2 8)(3 7)(4 6).

The only fishy orientation of F9 is clearly D1 = ~C9(1, 2). Just assuming that 1 is the pitcher
of the right diamond of F10 determines the fishy orientation D2. Doing the same for F11
determines 14 arrows and the fact that the vertices of the induced quadrilateral {2, 3, 7, 8}
are all runners in it, so it is a directed 4-cycle; it would seem that two digraphs can be
obtained, but the permutation (2 3)(7 8) sends each one to the other, so one gets only D3.
Assuming that 8 is the pitcher and 2 the catcher of the lower diamond of F12 we can also
suppose, using the symmetry (1 9)(4 6) if needed, that 6 is the pitcher and 4 the catcher of
the upper diamond, and this determines the fishy digraph D4.

The last four quartics have no diamonds and require a closer scrutiny.

The quartic F13 is made up of two induced subgraphs: the bowtie {2, 4, 5, 6, 8} and the twisted
quadrilateral {1, 3, 7, 9}, which are connected by the sides, i.e. the induced quadrilaterals
{1, 2, 3, 4} and {6, 7, 8, 9}. The bowtie is formed by the only two triangles of F13. Any
symmetry of F13 must fix 5, and send the twisted quadrilateral to itself. Besides the left-
right reflection µ = (1 9)(2 8)(3 7)(4 6), we will use λ = (7 9) and ρ = (1 3) to “invert” the
twisted quadrilateral, and σ = (2 4)(6 8) to swap the triangles.

Fix a fishy orientation D of F13. In our first case, 5 is a runner of the upper triangle {4, 5, 6}
(hence also of the lower triangle {2, 5, 8}). Using µ if needed we have the arrows 4 → 6,
4→ 5→ 6. Then we also have 7← 6→ 9, 1→ 4← 3. There are two subcases:

In the first subcase, if 2→ 5→ 8 and 2→ 8, D must be the digraph D5 in Figure 7.3.

In the second subcase, if 8 → 5 → 2 and 8 → 2, besides these three, four further arrows
are determined, and the twisted quadrilateral is only forced to be directed. In principle two
digraphs could be obtained, but any of λ, ρ takes each one to the other, and therefore only
the digraph D6 is obtained in this subcase.

Note that D5 � D6 as they induce non-isomorphic orientations of the twisted quadrilateral.

The remaining case is that in which 5 is not a runner of either triangle. Observe that the
digraphs stemming from this case won’t be isomorphic to D5 or D6. Using σ and/or µ if
needed, we have 4← 5→ 6, 6→ 4 and their concomitant 1← 4→ 3, 2→ 5← 8. Using λ
if needed, we can also obtain 9→ 6→ 7, since 6 must be a runner of the left side {6, 7, 8, 9}.
This second case has two subcases, according to whether 8→ 2 or 2→ 8.

In the first subcase, besides 8 → 2 we get 7 → 8 ← 9, and then 1 → 9 ← 3. Now the
quadrilateral {1, 2, 3, 7} must be directed, and using ρ if needed we obtain D7.
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In the second subcase, besides 2 → 8 we only get 1 → 2 ← 3 and that 8 is a runner of the
outer enneagon, leading to two subsubcases: 7→ 8→ 9 and 9→ 8→ 7.

The first subsubcase forces the twisted quadrilateral to be directed, and using ρ if needed
we are led to D8. The second subsubcase leads directly to D9.

As they induce non-isomorphic orientations of the twisted quadrilateral, D7, D8 and D9 are
not isomorphic. They are also self-dual, as σµ, σρ and σλ take them to their duals.

Figure 7.3. The twelve fishy digraphs D1, . . . , D12 with nine vertices.

The quartic F14 is the line graph of the complete bipartite graph K3,3, so its vertices can
be identified with ax, ay, az, bz, . . . , cx (denoting by {a, b, c} and {x, y, z} the parts of K3,3).
Any symmetry of K3,3 induces one of F14 in an obvious way (in fact, every symmetry of F14 is
obtained this way by [21, 5.3], but we don’t need that much). In particular, any permutation
of the three upper vertices (4, 5, 6) = (bz, bx, by) can be achieved by some symmetry in
Aut({x, y, z}), so that we can assume (given a fishy orientation D of F14) that D has arrows
4 → 5 → 6 and 4 → 6. Then 5 is also a runner of of the triangle {1, 5, 9} and we can also
suppose that D has arrows 1 → 5 → 9 and 1 → 9 (using if needed (a c) ∈ Aut({a, b, c}),
which does not disturb the upper triangle {4, 5, 6}). But then D is forced to be D10.

Given a fishy orientation D of F15, we can assume, rotating or reflecting the figure if needed,
that we have 2 → 5 → 8 and 2 → 8. Using the symmetry (1 3)(4 6)(7 9) if needed we can
also assume 4→ 5→ 6 and 4→ 6. But then D has to be D11.

Given a fishy orientation D of F16, let us call a vertex a pitcher, a runner or a catcher if
it is so in the outer enneagon (equivalently, if it is a catcher, a runner or a pitcher in the
triangle that contains it). Then there are three vertices of each kind. Note that two pitchers
(or two catchers) are never adjacent in F16. We claim that no runner is isolated in the outer
enneagon. Suppose, to the contrary, that 5 is an isolated runner, so we can assume that 4 is
a pitcher and 6 is a catcher. Then 3 and 7 are also runners. Then 1 is a catcher, so 2 must
be a pitcher (since 3, 5 and 7 are already all the runners), contradicting that 3 is a runner.
It follows that the three runners are consecutive, let’s say that 4, 5, 6 are runners, 3 a pitcher
and 7 a catcher. Then D = D12. We therefore have:

Proposition 7.10. There are exactly twelve shoal graphs with 18 vertices, and all of them
are self-clique. Their associated fishy digraphs are those in Figure 7.3. �
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Shoal graphs of order 20:

We won’t give the full details here, but certainly the case of shoal graphs with 20 vertices
can still be tackled by hand using the same method.

There are 59 quartic graphs with 10 vertices, denoted by Q27 – Q85 in [20]. Twenty-seven of
them do not admit fishy orientations. Indeed, one sees at first glance that eighteen of these
(those with Q numbers 31–33, 49–51, 64–68, 72–75, 81–83) violate our Lemmas 7.2, 7.3, 7.4
or 7.6, while straightforward applications of Lemmas 7.1 and 7.5 take care of the remaining
nine (27, 29, 34, 35, 38, 52–55).

Thirteen of these quartics admit, up to isomorphy, a unique fishy orientation, which is
necessarily self-dual: Easy uses of Lemmas 7.1 and 7.5 show this for twelve of them (36, 37,
39–41, 43, 56–59, 79, 80), and Q77 also has this property even if it has no diamonds.

Lemmas 7.1 and 7.5 still help to simplify the study of most of the remaining nineteen quartics,
as only nine of them do not have diamonds. In all, the order 10 quartic graphs admit 114
fishy orientations up to isomorphy, and only 60 of them are self-dual.

Figure 7.4. A non-self-dual fishy digraph D of the minimal possible order
and its associated non-self-clique shoal graph G.

In Figure 7.4 we depict an example of a non-self-dual fishy digraph D and its associated
shoal graph G, which is necessarily non-self-clique. The underlying graph of D is the quartic
Q30, which is easily seen to have trivial symmetry group, so none of its orientations is
self-dual. In fact, using Lemma 7.1 one sees easily that the depicted orientation is unique
up to duality. As in the case of the unique minimal-order shoal graph in Figure 7.1, in
our depiction of the shoal graph G in Figure 7.4 each of the ten diamonds is an isosceles
trapezium and its diagonal is dashed for easier recognition. The quartics Q47 and Q48 are
the most “productive” among those of order ten: each of them admits, up to isomorphy,
fifteen fishy orientations, three self-dual and twelve non-self-dual.

We also used a computer to further explore fishy digraphs up to order 14. The corresponding
quartic graphs, generated by the program GENREG, were downloaded from Meringer’s site
http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html#CRG [18]. To search for
the fishy orientations of each quartic we used Gap [10], and nauty [17] was used for isomorphy
and self-duality checking. We summarize our findings in Table 7.1.

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html#CRG
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Table 7.1. The numbers, up to isomorphy, of fishy digraphs and self-dual
fishy digraphs of orders seven to fourteen:

Order: 7 8 9 10 11 12 13 14
Fishy digraphs: 1 3 12 114 1,169 15,546 219,676 3,299,651
Self-dual: 1 3 12 60 237 1,188 5,244 26,363

Quartic graphs, up to order 22, have been generated and counted up to isomorphy, using
GENREG, by Markus Meringer [18] and Jason Kimberley (see [19], from where we have
borrowed Table 7.2).

Table 7.2. The known numbers of quartic graphs:

Order Quartics
5 1
6 1
7 2
8 6
9 16
10 59
11 265
12 1,544
13 10,778
14 88,168
15 805,491
16 8,037,418
17 86,221,634
18 985,870,522
19 11,946,487,647
20 152,808,063,181
21 2,056,692,014,474
22 28,566,273,166,527

8. Exponentially Many Examples

In this section we shall give, for each n with 80 ≤ n ≤ ℵ0, exponentially many examples of
self-dual and non-self-dual fishy digraphs of order n, thus proving theorems 8.1 and 8.2.

As previously announced, we will apply a gluing technique to our circulant fishy digraphs of
Section 6. If D,D′ are digraphs, in order to glue D and D′ across the arrows f : x→ y of D
and f ′ : x′ → y′ of D′ one subdivides these arrows and identifies the new vertices, obtaining
thus a digraph with |S|+ |T |+ 1 vertices. In other words, we remove f and f ′ and then add
a new vertex v and four new arrows x → v → y and x′ → v → y′. If both D and D′ are
connected, 2-regular, or even fishy, then the resulting digraph is so too. We will only use
circulants of the form ~Cn(1, t), and each of these has at any vertex x a long arrow x→ x+ t
with some t > 1. All gluings will be made across long arrows.

Take n ≥ 80 and put n = 10q+r, where 0 ≤ r ≤ 9. For the infinite case, take n = q = ℵ0 and
r = 0. We rename some circulants: A = ~C8(1, 3), B = ~C8(1, 5), Q = ~Cq(1, 2), R = ~Cr+8(1, 2).
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To a unique copy of Q we will glue several copies T of A,B and R. To glue T to Q at the
vertex x ∈ Q is to glue T and Q across the long arrows of Q at x and of T at 0. We can
glue other T ’s at other vertices of Q, and the resulting digraph is always fishy. Figure 8.1
shows the result of gluing R = ~C8(1, 2) at 0 and A = ~C8(1, 3) at 1 to Q = ~Cℵ0(1, 2).

210

Figure 8.1. Result of gluing R = ~C8(1, 2) at 0 and A at 1 to Q = ~Cℵ0(1, 2).

We now construct a digraph M(X) for each X ⊆ V (Q) \ {0}. First, glue R to Q at 0.
Then, for each x ∈ X, glue a copy of A at x. Finally, glue a copy of B at each remaining
x ∈ V (Q) \ (X ∪{0}). The digraph M(X) is fishy and has n vertices (n = ℵ0 when q = ℵ0).
We have that M(X) ∼= M(X ′) if, and only if, X = X ′. Besides, M(X) is self-dual precisely
when X = −X, where −X = {−x | x ∈ X}.

In the finite case, we just constructed 2q−1 = Θ((2 1
10 )n) non-isomorphic fishy digraphs of

order n. Of these, 2d
q−1

2 e = Θ((2 1
20 )n) are self-dual and 2q−1 − 2d

q−1
2 e = Θ((2 1

10 )n) are
non-self-dual, so we have:
Theorem 8.1. The numbers of non-isomorphic self-clique and non-self-clique shoal graphs
of finite order 2n both grow at least exponentially with n. �

In the infinite case we constructed c = 2ℵ0 non-isomorphic self-dual (and also non-self-dual)
fishy digraphs of order ℵ0. Any connected and 2-regular infinite digraph must have this order
and, as even the total number of labelled digraphs of order ℵ0 is c, we have:
Theorem 8.2. The number of isomorphy types of infinite connected diamantine shoal graphs
(either self-clique or non-self-clique) is the cardinality of the continuum. �

It should be clear that the examples constructed here are but an exceedingly tiny sample
of shoal graphs. In our view, we have given strong evidences showing that self-clique shoal
graphs can not be classified. This would answer a question in [7, §6] in the negative. However,
a formal proof of unclassifiability would require a formal definition of classifiability, and this
latter is lacking.
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Our lower bounds Θ((2 1
10 )n) and Θ((2 1

20 )n) for the numbers of shoal graphs and self-clique
shoal graphs of finite order 2n could very well be too small. On the other hand, an easy
upper bound (the number of labeled graphs on 2n vertices and 5n edges) is

((2n
2 )

5n

)
= nΘ(n).

Hence the following problems present themselves for the finite case:

Problem 1. Are there better lower bounds for the number of shoal graphs and self-clique
shoal graphs?

Problem 2. Are there better upper bounds for the number of shoal graphs and self-clique
shoal graphs?

Problem 3. Do the number of shoal graphs and the number of self-clique shoal graphs grow
exponentially or superexponentially?
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