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Abstract. We study graph homotopy, which was introduced by Dochtermann in 2009.
Among other characterizations we show that the homotopy congruence is the finest one
that makes invertible the graph morphisms in certain families, and also the finest one that
identifies some endomorphisms with identity maps.

On the homotopy category the clique graph operator becomes a functor. This sheds more
light into the dynamical behavior of clique graphs and a new unexplored panorama emerges.
We introduce a new technique, based on unbounded morphisms, which enables us to prove
results on clique divergence that could not be afforded by previously existing methods.

1. Introduction

In graph dynamics [53] one considers the class of all graphs G, some graph class H ⊆ G and
some graph operator Φ ∶ G → G. The operator can be iterated on graphs, setting Φ0(X) =X
and Φn+1(X) = Φ(Φn(X)), and also on classes of graphs, using Φ(H) = {Φ(X) ∣ X ∈ H}.
Natural questions in this general subject include whether we can classify the graphs in Φ(H),
Φ2(H), Φ3(H),... [1, 2, 10, 11, 15, 21, 45], which graphs X ∈ H satisfy some graph equation
Φ(X) ≅ Φ′(X) for some other graph operator Φ′ [3–5, 7–9, 46, 59, 60], and the dynamical
behavior problem: which graphs X ∈ H converge under Φ, in the sense that Φn(X) ≅ Φm(X)
for some n <m, or diverge under Φ, meaning that they do not converge or, equivalently, the
sequence of orders ∣Φn(X)∣ tends to infinity when n→∞ [12, 16, 20, 22, 41, 43, 63–67].

One of the most researched graph operators is the clique graph operator K, which sends each
graph X ∈ G to its clique graph: the intersection graph K(X) of the (maximal) cliques of X.
[1, 3–5, 7–12, 14, 18, 24, 26, 28, 29, 31, 34, 40, 41, 43, 47, 48, 50, 51, 59, 62]. Applications
of the clique graph operator have been made to the fixed point property for posets [24], and
to loop quantum gravity [55–57]. In this work we are interested in the study of the behavior
problem for the clique graph operator K from the point of view of graph homotopy.

The topological approach to graph dynamics was pioneered by Prisner in [52], where
he proved that X and K2(X) have the same homotopy type when X is clique-Helly. This
came by way of a general result: The pared graph P (X) of any graph X satisfies P (X) ≃X.
Here X is seen as a topological space by means of the geometric realization of its flag complex,
whose simplexes are the complete subgraphs of X. Also from [52]: For any X ∈ G one has
that X and K(X) have the same 1-dimensional modulo 2 Betti numbers, and therefore only
the graphs X with β̄1(X) = 0 can be K-null in the sense that Kn(X) has just one vertex
for some n ≥ 0. This kind of topological research of the behavior of graphs under the clique
graph operator has been pursued further, among other papers, in [29, 30, 33, 35–39].
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But there is another way to speak of homotopy in the category of graphs which does not
use flag complexes. Rather than topological, it is categorical: In the category G of graphs
we have products and, even if we do not have an interval object I in G, we do have a whole
family of them, namely the paths In of length n ≥ 0. The cylinder of height n over a graph X
is X × In and we cay say that two graph morphisms f, g ∶X → Y are homotopic if there is a
graph morphism H ∶X × In → Y for some n ≥ 0 such that the restriction of H to the bottom
X × {0} of the cylinder is f and the restriction of H to the top X × {n} of the cylinder is g.
Precisely this framework, under the name of ×-homotopy, was introduced and first explored
by Dochtermann in [13] as the basis for his investigation of Hom complexes.

In accordance with the coloring-related interests pursued therein, the graphs of [13] are
simple graphs that may have loops at some vertices. Since we are interested in clique graphs
we shall work in the category G of simple graphs with reflexive morphisms, which is a full
subcategory of the category in [13] if we decree that in our graphs every vertex has a loop.
This way also the categorical product ‘×’ in G will admit the same description as in [13].
As this product is the only one we shall use, we shall call ‘×-homotopy’ just graph homotopy.
Since our aims are different, our overlaps with [13] will be few and sometimes, mostly when
occurring in straightforward material meriting no proof, they will not be mentioned.

Paving the way for homotopy in §4, we devote §2 to the graph category G and §3 to graph
relations. Some concepts and constructions that originated in clique graph research play a
central role in graph homotopy: A vertex y dominates x when N[x] ⊆ N[y], and x and y are
twins if they dominate each other (see §2.1). These notions motivate others, some known,
some new. For instance, the minimal dominant subgraphs are just the pared graphs which,
together with dominance, go back to [14]. But dominant equivalence relations and dominant
subgraphs are new. Among the morphisms occurring in 4.20 and 4.22 only dominant folds,
antifolds and dismantling retractions had appeared in print. The homotopy congruence is
the finest one that identifies our new types of endomorphisms with identities (see 4.20) and
also the finest one that makes invertible some other dominance-related maps (see 4.22).

In particular, twinhood gains new importance: Twin vertices are indistinguishable, and a
transposition that just interchanges two of them is always an automorphism of the graph.
If we decide to regard these transpositions of twins as if they were the identity map, all the
graph homotopy relations f ≃ g then follow just by the definition of a congruence (see 4.20).

Under the homotopy viewpoint (that is on the homotopy category hG, see §4) the clique
graph operator K is a functor (see §5.1) and the star morphism, long known in clique graph
theory, is a natural transformation (see §5.2). Investigating the dynamical behavior of the
functor K becomes a more natural and amenable theory. For instance, we will introduce the
concept of an unbounded morphism in §5.4 and apply it in §5.5 to prove the K-divergence
(even K-divergence in the homotopy category) of an infinite family of graphs (see 5.16).
As far as we know, this result can not be established by any previously known technique.

We deal in §6 with a new and interesting problem but leave it open: Is K-divergence in
the homotopy category hG really stronger than K-divergence in the old graph category G?
An affirmative answer is equivalent, by our 6.11, to a seemingly stricter requirement.

For terminology not explicitly defined here we refer the reader to [6] for graph theory, to [61]
for algebraic topology, and to [42] for category theory.
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2. The Category of Graphs

2.1. Preliminaries. We are only interested in finite simple graphs (i.e. finite, undirected,
no loops, no multiple edges). However, it we will be convenient to assume that each vertex
has a loop (see [25], [13]). By this reflexivity of our graphs we can say simply “x and y are
adjacent” when we mean “x and y are either adjacent or equal.” It is also helpful in view
of the kind of graph morphisms that we use. We shall keep loops rather implicit, and avoid
drawing or mentioning them. We say, for instance, that the path In of length n has vertices
V (In) = {0,1, . . . , n} and edges [0,1], [1,2], . . . , [n−1, n], and that the complete graph Kn of
order n has V (Kn) = {1, . . . , n} and E(Kn) = {ij ∣ i < j}. (Of course, [i, j] = ij = ji = [j, i]).
A subgraph X of Y (X ⩽ Y ) satisfies V (X) ⊆ V (Y ) and E(X) ⊆ E(Y ). For a set S ⊆ V (X)
we denote by ⟨S⟩ the subgraph of X induced by S. We write X P Y if X is an induced
subgraph of Y . We identify sets of vertices S ⊆ V (X) with the subgraphs ⟨S⟩ PX that they
induce so, given a graph X, we often write x ∈X instead of x ∈ V (X) and denote the order
of X by ∣X ∣. If x,x′ ∈X we write as usual x ∼ x′ (or xx′ ∈ E(X)) if x and x′ are adjacent, but
remember that this never excludes the possibility that x = x′. The neighborhood of x ∈ X is
N[x] = NX[x] = {x′ ∈X ∣ x′ ∼ x}. The open neighborhood of x is N(x) = N[x] ∖ {x} ≠ N[x].
A complete subgraph of X is any non-empty subset ∅ ≠ C ⊆ X such that x ∼ x′ for all
x,x′ ∈ C. It is important to remember that our complete subgraphs are always non-empty.
We shall use the word “complete” mostly as a noun, in the sense of “complete subgraph”.
The term “clique”, used elsewhere for this purpose, we shall reserve for “maximal complete”.
Note that x ∼ x′ in X if and only if C = {x,x′} is a complete (which we call small) of X.

Dominance and twinhood will be essential for us. The vertex x is dominated by x′, denoted
by x ≼ x′, if N[x] ⊆ N[x′]. This was first introduced by Escalante in [14] (see also [49, 52],
and §5.2 below). One also says that x′ dominates x, and writes x′ ≽ x. Saying that x is
a dominated vertex (or just dominated, without saying by whom) means that x ≼ x′ for some
vertex x′ ≠ x. Thus the graph X is stiff [25] if X has no dominated vertices, i.e. each vertex
is dominated only by itself. The vertices x,x′ are said to be twins (denoted by x ≈ x′) if and
only if N[x] = N[x′], i.e. x ≼ x′ and x′ ≼ x. Notice that x ≈ x′⇒ x ≼ x′⇒ x ∼ x′.

Lemma 2.1. If a, b ∈X P A and a ≼ b in A, then a ≼ b in X too (that is, a ≼A b⇒ a ≼X b).
Proof. Since X P A we have NX[a] = NA[a] ∩X ⊆ NA[b] ∩X = NX[b]. ◻
A graph morphism f ∶X → Y is any adjacency-preserving vertex mapping f ∶ V (X)→ V (Y ).
There are several equivalent definitions given by the conditions in:

Lemma 2.2. For a function f ∶ V (X)→ V (Y ) the following are equivalent (TFAE):
(1) x ∼ x′ implies f(x) ∼ f(x′) for all x,x′ ∈X (i.e. f is a graph morphism).
(2) f(C) is a complete of Y for each small complete C = {x, y} of X.
(3) f(C) is a complete of Y for each complete C of X.
(4) f(C) ∪ f(D) is a complete of Y if C ∪D is complete in X.
(5) f(N[x]) ⊆ N[f(x)] for all x ∈X. ◻

We also call graph morphisms graph maps, often shortening to just “morphisms” or “maps”.
Our maps (called reflexive elsewhere) can send distinct adjacent vertices to a single vertex.
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Our category of graphs G has all finite graphs as objects, the elements of mor(G) are the graph
maps, and the composition is the usual. We denote by ob(G) the class of objects of G but we
shorten “X ∈ ob(G)” to just “X ∈ G” and read this as “X is a graph”. If X,Y ∈ G we denote
by G(X,Y ) the set {f ∣ f ∶X → Y is a map}. Elsewhere Hom(X,Y ) or HomG(X,Y ) are also
common, but this kind of notation is used in other ways in [25] and [13] and to these works
we will often refer, explicitly or not. When X = Y one also denotes G(X,X) as End(X) and
calls its elements endomorphisms of X. Note that End(X) is a monoid under composition.

There is a larger category (we denote it by G±) of graphs with loops at some vertices, not
necessarily all. Our G sits inside G± as a full subcategory. Such works as [25] and [13] are
framed within G± but both focus from time to time on G (which is denoted by G○ in [13]).
We are only interested in G but we shall occasionally refer to G± for comparison purposes.

2.2. Special types of morphisms. By definition a graph morphism f ∶X → Y is a vertex
mapping f ∶ V (X) → V (Y ), but it defines as well an edge mapping f ∶ E(X) → E(Y ): for
any edge e = xx′ ∈ E(X) we set f(e) = f(x)f(x′) ∈ E(Y ). Using those mappings one can
say, e.g., that “every vertex-injective map is edge-injective” (which is obvious, by the way).

Let f ∈ G(X,Y ). The image of f is the subgraph Im(f) = f(X) ⩽ Y with vertex set
V (f(X)) = f(V (X)) and edge set E(f(X)) = f(E(X)). The kernel of f is an equivalence
relation ≡ in X: x ≡ x′ ⇔ f(x) = f(x′). This equivalence relation is denoted by Ker(f).
The equivalence class of a vertex x ∈X under Ker(f) is the fiber f−1(f(x)) ⊆X.

For any equivalence relation ≡ in X the quotient graph X/≡ has the classes [x] as vertices,
and there is an edge [x] ∼ [x′] whenever v ∼ v′ for some representatives v ∈ [x] and v′ ∈ [x′].
The natural projection q ∶X →X/≡ is given by q(x) = [x]. Here Ker(q) is precisely ≡.

If S ⩽ X, the inclusion map i = iS ∶ S ↪ X has Im(i) = S. If f ∶ X → Y is a morphism, the
restriction of f to S, denoted by f∣ ∶ S → Y , is given by f∣ = f ○ iS and has Im(f∣) = f(S).
If f(X) ⩽ T ⩽ Y the co-restriction of f to T , denoted by f ∣ ∶ X → T , has Ker(f ∣) = Ker(f).
Notice that f ∣ is the only map from X to T such that iT ○ f ∣ = f .

The monomorphisms (left cancellative, monos or monic) in G are the vertex-injective maps,
and the epimorphisms (right cancellative, epis or epic) are the vertex-surjective maps. The
isomorphisms (having a two-sided inverse, or isos) are the vertex- and edge-bijective maps
(vertex-bijective and edge-surjective is enough). A given f ∈ End(X) needs only to be monic
(or epic) to be an iso (an automorphism of X). Aut(X) = {f ∈ End(X) ∣ f iso} is a group.

Two monos s ∶X → A and t ∶ Y → A are equivalent if s = t○φ for some iso φ ∶X → Y . Dually,
two epis r ∶ A → X and q ∶ A → Y are equivalent if q = φ ○ r for some iso φ ∶ X → Y . Notice
that in both cases the isomorphism φ is necessarily unique since r is epic and t is monic.

X

A

Y

φ

s

t

X

A

Y

φ

r

q

Two monos are equivalent if and only if they have the same image, as any mono s ∶X → A is
equivalent to the inclusion of its image. Indeed, if Y = Im(s), t ∶ Y ↪ A and φ = s∣ ∶ X → Y ,
we have that t ○ φ = s and φ is clearly vertex- and edge-bijective, so it is an isomorphism.
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The embeddings are the “full” monomorphisms, i.e. vertex-injective maps s ∶ X → A with
s(x) ∼ s(x′) ⇔ x ∼ x′. Thus, the embeddings are the monos s ∶ X → A with Im(s) P A.
A mono s ∶X → A is an embedding just when any equivalent mono t ∶ Y → A is an embedding.

The projections are the epis r ∶ A → X with Im(r) = X, that is the vertex-surjective and
edge-surjective maps, as for instance the natural projection q ∶X →X/ ≡ . An epi r ∶ A→X
is a projection if and only if any equivalent epi q ∶ A → Y is a projection. The projections
r ∶ A→X are (just those) epis such that for any function f ∶ V (X)→ V (Y ) the composition
c = f ○ r ∶ V (A) → V (Y ) is a morphism c ∶ A → Y if and only if f ∶ X → Y is a morphism.
Two projections are equivalent if, and only if, they have the same kernel, as any projection
q ∶ A → Y is equivalent to the natural projection r ∶ A → X where X = A/Ker(q). Indeed,
as Ker(r) = Ker(q), the assignation [a] ↦ q(a) gives a well-defined and injective function
φ ∶ V (X)→ V (Y ). But φ is a map (hence a mono) because r is a projection and φ ○ r = q is
a map. And φ is edge surjective because q is so. Since φ is an iso, q is equivalent to r.

A section is a map s ∶ X → A having a left inverse r ∶ A → X and a retraction is a map
r ∶ A → X having a right inverse s ∶ X → A. The single equation r ○ s = 1X says that s is
a section (of r) and r is a retraction (of s). We also say that (r, s) is a retraction-section
pair, or that r and s form such a pair. In this case r is a projection and s an embedding.
An embedding is a section just when any equivalent embedding is so, and similarly for
projections: one is a retraction if and only if any equivalent projection is a retraction. The
other composition e = s ○ r ∶ A → A is always idempotent, i.e. e2 = e ○ e = e. Indeed,
e2 = s ○ r ○ s ○ r = s ○ 1X ○ r = s ○ r = e. A map e ∈ End(A) is idempotent if and only if e
fixes the vertices of e(A), but note that this entails e(A) P A and e∣∣ = 1e(A) ∶ e(A) → e(A).
A splitting of the idempotent e ∶ A → A is a retraction-section pair (r, s) with e = s ○ r.
Any idempotent e has a splitting: take X = e(A), r = e∣ ∶ A → X, s = iX ∶ X ↪ A.
We call this the standard splitting. Two splittings (r, s) and (q, t) of the idempotent e are
said to be equivalent if q = φ ○ r and s = t ○ φ for some isomorphism φ as in the diagram:

A A

X

Y

e

r

q

s

φ t

Proposition 2.3. Up to equivalence any idempotent e ∶ A→ A has a unique splitting (r, s).
Proof. If (q, t) is another splitting of e we use that r and q are projections to get that
s(X) = s(r(A)) = e(A) = t(q(A)) = t(Y ). Thus s and t are equivalent and there is an iso
φ ∶X → Y with s = t ○ φ. Then t ○ φ ○ r = s ○ r = e = t ○ q and hence φ ○ r = q as t is monic. ◻
A retraction r (or a section s) splits the idempotent e if e = s ○ r for some section s of r
(or for some retraction r of s). In this case we say that e is split by r (or by s).
Proposition 2.4. Two retractions r and q (or two sections s and t) are equivalent if, and
only if, they split the same idempotents.
Proof. If r and q (or s and t) split the same idempotent e they are equivalent by 2.3.
If r and q are equivalent, take the iso φ ∶ X → Y with q = φ ○ r. Assuming that r splits
the idempotent e, then e = s ○ r for some section s of r. Defining t = s ○ φ−1, notice that
q ○ t = φ ○ r ○ s ○φ−1 = φ ○ 1X ○φ−1 = 1Y and t ○ q = s ○φ−1 ○φ ○ r = s ○ 1X ○ r = s ○ r = e, so t also
splits e. The dual argument proves that equivalent sections split the same idempotents. ◻
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Any morphism r ∶ A → X with X ⩽ A and r(x) = x for all x ∈ X is a retraction, which we
will call special. If r ∶ A → X is one such special retraction, s ∶ X ↪ A is a section of r and
we shall call this section also special. Both the retraction and the section in the standard
splitting of an idempotent endomorphism are special. Hence any retraction (or section) is
equivalent to some special retraction (or special section): To find one it is enough, by 2.4,
to take the standard splitting of any idempotent split by the retraction (or the section).

If X,Y ∈ G, the product X × Y is defined on the vertex set V (X) × V (Y ) by coordinatewise
adjacency: (x, y) ∼ (x′, y′) ⇐⇒ x ∼ x′ & y ∼ y′. With the usual projections πX ∶X ×Y →X
and πY ∶ X × Y → Y given by πX(x, y) = x and πY (x, y) = y, this is the categorical product
(hence the product) of X and Y in G. The projections are retractions. Some sections of
them embed a factor in a slice of the product, that is a set of the form X × {y} or {x} × Y :
For y ∈ Y , define σy ∶ X → X × Y by σy(x) = (x, y) and, for x ∈ X, σx ∶ Y → X × Y by
σx(y) = (x, y). Notice that a subset S ⊆ X × Y is complete if, and only if, both projections
πX(S) ⊆X and πY (S) ⊆ Y are complete. Only this product, the product, will be used here.

2.3. The graph of morphisms. Häggkvist, Hell, Miller and Neumann-Lara, in
their paper [23], defined adjacency for parallel morphisms f, g ∶X → Y (and even for vertex
functions f, g ∶ V (X)→ V (Y )). There are several equivalent conditions for the definition:

Lemma 2.5. Let f, g ∈ G(X,Y ). Then the following conditions are equivalent:
(1) x ∼ x′ implies f(x) ∼ g(x′) for all x,x′ ∈ V (X).
(2) f(C) ∪ g(C) is a complete of Y for each small complete C of X.
(3) f(C) ∪ g(C) is a complete of Y for each complete C of X.
(4) f(C) ∪ g(D) is a complete of Y if C ∪D is complete in X.
(5) f(N[x]) ⊆ N[g(x)] for all x ∈X. ◻

Two morphisms f, g ∈ G(X,Y ) are adjacent (denoted of course by f ∼ g) if they satisfy 2.5.1
or any of the equivalent conditions in 2.5. This gives a graph structure to each set G(X,Y ).
In other words, we now have G(X,Y ) ∈ G whenever X,Y ∈ G.

Proposition 2.6. The composition map ○ ∶ G(Y,Z) × G(X,Y ) → G(X,Z) that sends (g, f)
to g ○ f is a graph morphism. In particular, g ∼ g′⇒ g ○ f ∼ g′ ○ f and f ∼ f ′⇒ g ○ f ∼ g ○ f ′.

Proof. Let (g, f) ∼ (g′, f ′) in G(Y,Z)×G(X,Y ). Then g ∼ g′ ∈ G(Y,Z) & f ∼ f ′ ∈ G(X,Y ).

X Y Z.
f

f ′

g

g′

If C ⊆X is complete, f(C)∪ f ′(C) ⊆ Y is complete by 2.5.3. Then g(f(C))∪ g′(f ′(C)) ⊆ Z
is complete by 2.5.4. Therefore g ○ f ∼ g′ ○ f ′ by 2.5.3 again. ◻
2.4. The neighborhood of the identity. We focus here on the monoid-cum-graph End(X).
Any function d ∶ V (X) → V (X) such that d(x) dominates x for all x ∈ X is a domination.
By analogy with “domination,” we call t ∶ V (X) → V (X) a twination if t(x) ≈ x for all x.
Since t(x) ≈ x implies t(x) ≽ x, twinations are particular cases of dominations.

Proposition 2.7. Any domination d ∶ V (X) → V (X) is a graph morphism d ∶ X → X.
The neighborhood of 1X in End(X) is the set N[1X] = {g ∶ X → X ∣ g is a domination}.
In consequence, N[1X] is a submonoid of End(X) (and so is the set of twinations).



GRAPH HOMOTOPY AND CLIQUE GRAPHS 7

Proof. If x ∈ X and x′ ∈ N[x], x ∈ N[x′] ⊆ N[d(x′)], so d(x′) ∈ N[x] ⊆ N[d(x)] and thus
d(N[x]) ⊆ N[d(x)], so d ∶ X → X is a map by 2.2.5. By 2.5.5, for any g ∶ X → X we have
that 1X ∼ g if and only if N[x] ⊆ N[g(x)] for all x ∈ X, i.e. just when g is a domination.
For the last claim note that 1X ∈ N[1X] and dominations are closed under composition as ≽
is a transitive relation (and that the same also holds for twinations and the relation ≈). ◻
Corollary 2.8. X is stiff (no dominated vertices) ⇔ 1X ∈ End(X) is an isolated vertex. ◻
Besides being closed under products, i.e. compositions, dominations and twinations are also
closed under certain factorizations that hold for any self-map f ∶ V (X)→ V (X). These will
be reviewed in Appendix A, to which we refer for more details.
Any self-map f ∶ V (X)→ V (X) is the product f = fa○fb of its acyclic part fa and its bijective
part fb, where fb is bijective and fa is acyclic: m > 0 and (fa)m(x) = x imply fa(x) = x.
Here f is acyclic⇔ f = fa⇔ fb = 1X and f is bijective⇔ f = fb⇔ fa = 1X . Both fa and fb

(and the transpositions, idempotents and pinches below) are functions h ∶ V (X) → V (X)
with h(x) ∈ {x, f(x)} for each x, so they are dominations (or twinations) as soon as f is so.

Any bijective domination f ∶ X → X is in fact a bijective twination: Indeed, if x ∈ X
there is an s > 0 with f s(x) = x, but then x = f s(x) ≽ f s−1(x) ≽ . . . ≽ f(x) ≽ x implies
x = f s(x) ≈ f s−1(x) ≈ ⋅ ⋅ ⋅ ≈ f(x) ≈ x. Any bijective twination f is a product of transpositions
f = t1 ○ ⋅ ⋅ ⋅ ○ ts where each tj = (xj, yj) is a twinning transposition, that is xj ≈ yj.
Any acyclic domination f ∶ X → X is a product f = ek ○ ⋅ ⋅ ⋅ ○ e1 of idempotent dominations.
If a, b ∈ X, the pinch p = [a, b] ∶ X → X is the map sending a to b and fixing every x ≠ a.
This pinch p is a dominant pinch when b ≽ a, and a twinning pinch when a ≈ b.
Any idempotent domination e ∶ X → X is, by 2.9 below, a product of dominant pinches.

The twin of a statement uses “twination”/“twinning” instead of “domination”/“dominant”.
Both versions are often true, and with twin proofs. We shall denote this with “( + Twin )”.

Lemma 2.9 ( + Twin ). If the idempotent dominations e1, . . . , ek ∈ End(A) commute with
each other, e =∏k

i=1 ei is an idempotent domination. Conversely, any idempotent domination
e ∈ End(A) admits such a factorization e =∏k

i=1 ei where the ei commute with each other and
are dominant pinches of the form ei = [xi, e(xi)].
Proof. By A.2, e is idempotent, and a domination by 2.7. Conversely, by A.2, e = ∏k

i=1 ei

with ei = [xi, e(xi)] and ei ○ ej = ej ○ ei. As e(xi) ≽ xi , these ei are dominant pinches. ◻

2.5. Dominant and twinning sections and retractions. Dominations and twinations
are endomorphisms: elements of End(A) for some A ∈ G. Co-restricting such an f ∈ End(A)
to its image X = f(A) ⩽ A gives rise to a morphism f ∣ ∶ A→X which, if X ≠ A, is no longer
an endomorphism of A but an epimorphism r ∶ A→X. When f is idempotent r is a special
retraction which, with the special section s ∶X ↪ A, gives the standard splitting of f .

We define dominant retractions and dominant sections to be those retractions and sections
that split some idempotent domination. Thus a map r ∶ A→X is a dominant retraction just
when there is a map s ∶ X → A such that r ○ s = 1X and e = s ○ r ∈ End(A) is a domination.
In the same way, a section s ∶ X → A is dominant if for some retraction r ∶ A → X of s the
idempotent e = s ○ r ∶ A → A is a domination. Similarly, by definition, twinning retractions
and twinning sections are those retractions and sections that split idempotent twinations.
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If e ∈ End(A) is an idempotent domination recall that its standard splitting has X = e(A),
r = e∣ ∶ A → X and s ∶ X ↪ A. Each vertex of A ∖X is dominated by some vertex in X, so
the dominant retraction r can be seen as recording in a morphism the operation of removing
some dominated vertices of A (those in A∖X) and also recording, for each removed vertex,
one that dominated it before the removal. Similarly, the dominant section s corresponds to
adding some dominated vertices to X. These remarks (and their twins) also apply for any
splitting (standard or not) of e, as all are equivalent by 2.3. For instance, any dominant
retraction r ∶ A→X “removes”, up to an iso φ ∶X →X ′, some dominated vertices of A.

An induced subgraph X P A is a dominant subgraph of A if each vertex of A is dominated
by some vertex in X. Of course, if each vertex of A is a twin of some vertex in X, we call
X P A a twinning subgraph of A. An equivalence relation ≡ in V (A) is dominant if each
equivalence class C contains some vertex a

C
∈ C that dominates all C, i.e. a

C
≽ x ∀x ∈ C.

By the twin definition ≡ is twinning if each equivalence class C contains some vertex a
C
∈ C

which is a twin of all the vertices in C, i.e. a
C
≈ x ∀x ∈ C, but this just means that each

equivalence class C is a twinset in the sense that all its elements are twins: x ≈ y ∀x, y ∈ C.
Proposition 2.10 ( + Twin ). If t ∶ Y → A is an embedding with X = Im(t), TFAE:

(1) the embedding t ∶ Y → A is a dominant section,
(2) any embedding u ∶ Z → A with Im(u) =X is a dominant section,
(3) the embedding s = iX ∶X ↪ A is a dominant section,
(4) X = Im(e) for some idempotent domination e ∶ A→ A, and
(5) X is a dominant subgraph of A.

Proof. The embeddings in (1), (2), and (3) have the same image X, so they are equivalent.
They are sections as soon as any of them is, and by 2.4 they all split the same idempotents,
be they dominations or not. Therefore (1), (2) and (3) are equivalent. To finish the proof we
will prove now that (1)⇒ (4)⇒ (5)⇒ (3). Using (1), t splits some idempotent domination
e ∶ A → A, and so X = Im(t) = Im(e), that is (4). By (4) X P A is dominant, hence (5).
Using (5), let e(a) = a if a ∈ X and, if a ∉ X, pick any e(a) ∈ X such that e(a) ≽ a.
This domination e ∶ A → A, a map by 2.7, is idempotent since it fixes its image e(A) = X.
The standard splitting of e is (e∣, s) and thus we have (3). ◻

Corollary 2.11. If X P A is dominant, there is a dominant retraction r = e∣ ∶ A→X. ◻

Proposition 2.12 ( + Twin ). If q ∶ A→ Y is a projection, let X = A/Ker(q). TFAE:
(1) the projection q ∶ A→ Y is a dominant retraction,
(2) any projection v ∶ A→ Z with Ker(v) = Ker(q) is a dominant retraction,
(3) the natural projection p ∶ A→X is a dominant retraction,
(4) Ker(q) = Ker(e) for some idempotent domination e ∶ A→ A, and
(5) Ker(q) is a dominant equivalence relation on A.

Proof. q, v, and p have the same kernel, so (1)⇔ (2)⇔ (3). By (1), q splits an idempotent
domination e ∶ A→ A. Hence (4), as Ker(q) = Ker(e). Assuming (4) note that e∣ ∶ A→ e(A)
splits e and Ker(e∣) = Ker(e). Then Ker(q) = Ker(e∣), so q also splits e by 2.4 and there
is a section t ∶ Y → A of q with e = t ○ q. If y ∈ Y, put ay = t(y). As q(ay) = q(t(y)) = y,
ay ∈ q−1(y). As e is a domination, for all x ∈ q−1(y) we have x ≼ e(x) = t(q(x)) = t(y) = ay,
so Ker(q) is dominant, that is, (5) holds.
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Using (5) take, for any y ∈ Y, a vertex ay ∈ q−1(y) with ay ≽ x for all x ∈ q−1(y). Define
t ∶ V (Y )→ V (A) by t(y) = ay. Set e = t ○ q ∶ V (A)→ V (A). As e(x) = aq(x) ≽ x for all x ∈ A,
e is a map by 2.7. Then t is a map since q is a projection. If y ∈ Y, q(t(y)) = q(ay) = y, so
q ○ t = 1Y and t is a section of q. As e is an idempotent domination split by q, (1) holds. ◻
2.6. Folds and antifolds, dismantlings and assemblings. If x ∈ A is dominated
(say x ≼ y ≠ x) the pinch e = [x, y] ∶ A→ A is an idempotent domination. Any splitting (r, s)
of e entails a dominant retraction r ∶ A→X and a dominant section s ∶X → A with e = s ○ r
and r ○ s = 1X . We call r a dominant fold and s a dominant antifold. Using the standard
splitting, r = e∣ ∶ A → A ∖ x is a special dominant fold (or just a fold in [25], and the special
dominant antifold s ∶ A∖x↪ A is an antifold in [13]). Twinning folds and twinning antifolds
split the twinning pinches e = [x, y] with x ≈ y ≠ x. We will focus on dominant folds and
antifolds, mostly skipping their twin versions and mentioning them only in 4.22 below.
We shorten “dominant fold” to “fold.” By 2.12 a projection r ∶ A → X is a fold iff Ker(r)
is folding: it has one class {x, y} with x ≼ y ≠ x, and all others are singletons. By 2.10 an
embedding s ∶X → A is an antifold iff Im(s) ⩽ A is antifolding: a dominant subgraph missing
just one vertex. A projection equivalent to a fold is a fold by 2.4 and likewise for sections and
antifolds, so any fold (antifold) is equivalent to some special fold (antifold). A dismantling
r ∶ A → X is a composition of folds r = rk ○ ⋯ ○ r2 ○ r1. In this case A dismantles to X,
or X is a dismantling of A [13, 17, 25, 49, 52]. An assembling s ∶ X → A is a composition
of antifolds s = s1 ○ s2 ○ ⋅ ⋅ ⋅ ○ sk. Dismantlings (assemblings) are always retractions (sections)
since so are folds (antifolds), but in general they are not dominant retractions (sections).

Lemma 2.13. A projection r is a dismantling iff some (any) equivalent projection φ ○ r is
so, and likewise for embeddings and assemblings. Any dismantling (assembling) is equivalent
to a composition of special folds (special antifolds).
Proof. If r = rk ○ ⋅ ⋅ ⋅ ○ r1 is a dismantling, φ ○ r = (φ ○ rk) ○ ⋅ ⋅ ⋅ ○ r1 is a dismantling too.
Indeed, φ ○ rk is equivalent to rk and thus it is also a fold. For an assembling s = s1 ○ ⋅ ⋅ ⋅ ○ sk

the argument is similar: we have s ○ φ = s1 ○ ⋅ ⋅ ⋅ ○ (sk ○ φ), and (sk ○ φ) is also an antifold.
A X1 X2 X3

A A1 A2 A3

r1

1A

r2

φ1 φ2

r3

φ3

q1 q2

r′2

q3

r′3 . . . . . .

X3 X2 X1 A

A3 A2 A1 A

s3

φ3
s′3

s2

φ2
s′2 φ1

s1

1A

t3 t2 t1

Now let r = rk ○ ⋯ ○ r2 ○ r1 be any dismantling, and take an iso φ1 ∶ X1 → A1 P A where
q1 = φ1 ○ r1 ∶ A→ A1 is a special fold. If k > 1, then r′2 = r2 ○φ−1

1 ∶ A1 →X2 is a fold as it has a
folding kernel just as r2. Then there is an iso φ2 ∶X2 → A2 P A1 where q2 = φ2 ○ r′2 ∶ A1 → A2
is a special fold. Then φ2 ○ r2 = φ2 ○ r′2 ○ φ1 = q2 ○ φ1, so the first two squares commute and
φ2 ○ r2 ○ r1 = q2 ○ q1 is a composition of two special folds. Continuing this way we get an
iso φk such that φk ○ r = φk ○ rk ○⋯○ r2 ○ r1 = qk ○⋯○ q2 ○ q1 is a composition of k special folds.
The case of an assembling s = s1 ○ s2 ○ ⋅ ⋅ ⋅ ○ sk is similar: The image of each s′i = φi−1 ○ si is
antifolding, hence the isomorphism φi and the special antifold ti with ti ○ φi = s′i. ◻

Given a sequence of distinct vertices x1, x2, . . . , xk ∈ A put Xi = A∖{x1, x2, . . . xi} for 0 ≤ i ≤ k
and X =Xk, so we have a sequence of induced subgraphs A =X0 QX1 QX2 Q . . . QXk =X.
We call x1, x2, . . . , xk a dismantling sequence if xi ≼ yi ≠ xi in Xi−1 for some vertices yi ∈ Xi

where i ∈ {1,2, . . . , k}. In this case one clearly obtains a sequence of special dominant folds
A =X0

r1Ð→X1
r2Ð→X2

r3Ð→ ⋯Xk−1
rkÐ→Xk =X (also called a dismantling sequence in [25]).
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Theorem 2.14. Any dominant retraction (dominant section) is a dismantling (assembling).
Any special dominant retraction (section) is a composition of special folds (antifolds).

Proof. We can take (2.13) a special dominant retraction r ∶ A→X. Let A∖X = {x1, . . . , xk}
and Xj = A ∖ {x1, x2, . . . xj}, so X0 = A and Xk = X. Let yi = r(xi), so xi ≼ yi ≠ xi in A.
Then xi ≼ yi in Xi−1 P A by 2.1, so x1, x2, . . . , xk is a dismantling sequence and we have
special folds r1, r2, . . . , rk as above. Then r = rk ○⋯○ r2 ○ r1 is a dismantling. For sections we
take a special dominant section s ∶ X ↪ A. Then X P A is dominant by 2.10, and adding
to X the vertices in A ∖X one by one yields a sequence of special antifolds si ∶ Xi ↪ Xi−1
because, as X P A is dominant, so is each Xi P Xi−1. Another proof: If e ∈ End(A) is
an idempotent domination split by r or by s, put e = ∏k

i=1 ēi as in 2.9. If ēi = [xi, yi], take
ei = [xi, yi] ∈ End(Xi−1) with standard splitting (ri, si). These are the needed ri or si. ◻
2.7. Pared graphs. Let X P A be a dominant subgraph of A. If X P Y P A, then X is
also dominant in Y by 2.1. In the other direction, not all induced subgraphs Z P X are
dominant subgraphs of A, but X must contain some minimal dominant subgraph Z of A.
Dominance is a preorder ≼ on V (A) and twinhood ≈ is mutual dominance, so we know that ≈
is an equivalence relation in V (A) and ≼ induces among twinhood classes a quotient partial
order ≤ given by ā ≤ b̄⇔ a ≼ b, where ā and b̄ are the twinhood classes of a and b.
Proposition 2.15. An induced subgraph is a dominant subgraph just when it contains a
vertex from each of the maximal twinhood classes. In consequence, it is a minimal dominant
subgraph just when its vertex set is a system of representatives of those maximal classes.
Proof. If X P A is dominant and the class ā is maximal, take x ∈ X with x ≽ a, so x̄ ≥ ā.
Then x̄ = ā, so x ∈ ā and x ∈ ā∩V (X). Now, if V (X) contains a system S of representatives
of the maximal classes in A, let a ∈ A, pick a maximal class b̄ with ā ≤ b̄ and take s ∈ S ∩ b̄.
We have b̄ = s̄ and then ā ≤ s̄. But then a ≼ s ∈X, and thus X is dominant. ◻
The pared graph P (A), due to Escalante [14], is any minimal dominant subgraph of A.
By 2.15, P (A) = ⟨S⟩ P A for some system S of representatives of the maximal twinhood
classes of A. If S′ is another such system we have ⟨S⟩ ≅ ⟨S′⟩, so P (A) is only well-defined
up to isomorphy: “Y = P (A)” means “Y = ⟨S⟩” for some such S. By 2.11 there is a special
dominant retraction r ∶ A→ P (A). We call r a paring retraction. It is a dismantling by 2.14.
We call the dominant section P (A) ↪ A a paring section. If P (A) is not stiff, iterating the
paring operator yields a sequence of graphs A = P 0(A) Q P (A) Q P 2(A) Q ⋯ . The first r ≥ 0
with P r(A) = P r+1(A) is the paring index pi(A) of A, defined by Prisner [52]. Note that the
completely pared graph P∞(A) = P pi(A)(A) is stiff, and that pi(P (A)) = max{0,pi(A) − 1}.
Composing paring retractions we get what we still call paring retractions r ∶ A → P i(A).
They admit the paring sections s ∶ P i(A)↪ A as right inverses. Then we have:

Lemma 2.16. For 1 ≤ i ≤ pi(A), any paring retraction r ∶ A → P i(A) is a dismantling and
any paring section s ∶ P i(A)↪ A is an assembling. For i = 1 we have more: r ∶ A→ P (A) is
a dominant retraction and s ∶ P (A)↪ A is a dominant section. ◻
Lemma 2.17. For any graph A the following six conditions are equivalent:

(1) A is stiff.
(3) A = P (A).

(2) A is its only dominant subgraph.
(4) A = P∞(A). (5) pi(A) = 0.

(6) Any dominant retraction A→X is an isomorphism. ◻
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2.8. The hash arrow relation. The mere existence of some dominant retraction X → Y
is often more important than which particular one is at hand. When there is a dominant
retraction r ∶ X → Y we say that X dismantles to Y in one step and denote it by X

#Ð→ Y.
Besides X dismantling to Y by 2.14, the removed vertices are initially dominated in X and
we can either remove them sequentially (in any order) or all at once (hence “in one step”).
Hash arrows were introduced by Frías-Armenta, Neumann-Lara and Pizaña in [17].
We clearly have X #Ð→X, i.e. X dismantles trivially to itself. The smallest non-trivial steps
X

#Ð→ Y correspond to folds X → Y. Paring retractions X → P (X) are dominant by 2.16, so
we always have that X #Ð→ P (X), and this is as large a step as we can take starting from X.
As in [18] we shorten X0

#Ð→ X1
#Ð→ ⋯ #Ð→ Xt to X0

#tÐ→ Xt (X0 dismantles to Xt in t steps).
Note that X dismantles to Y just when X

#tÐ→ Y for some t. As Y #Ð→ Y, we always have:

Lemma 2.18. If X #tÐ→ Y then X
#t+1ÐÐ→ Y , so X #tÐ→ Y implies X #mÐÐ→ Y for all m ≥ t. ◻

Since X
#pi(X)ÐÐÐ→ P∞(X), one can reach a stiff graph from X in pi(X) steps, see 2.16, 2.17.

At least pi(X) steps are needed, and the stiff graph is always P∞(X), as seen in 2.20 below.

Proposition 2.19. If X #Ð→ Y then Y
#Ð→ P (X).

Proof. Taking a special dominant retraction r ∶ X → Y we can assume that Y P X is a
dominant subgraph of X. Let Z P Y be a minimal dominant subgraph of X, so Z = P (X).
Hence Z is a dominant subgraph of Y by 2.1, and thus we get that Y #Ð→ Z by 2.11. ◻

Theorem 2.20. If X #tÐ→Xt and Xt is stiff, then t ≥ pi(X) and Xt ≅ P∞(X).
Proof. [ “(k)” will stand for “2.17. k” ]. If t = 1 we have X #Ð→X1, and X1

#Ð→ P (X) by 2.19.
As X1 is stiff, X1 ≅ P (X) by (6), so P (X) is stiff, P (X) = P 2(X) by (3), and 1 ≥ pi(X).
As P (X) is stiff, (4) yields X1 ≅ P (X) = P∞(P (X)) = P∞(X). If t > 1, assume first
that X is stiff. Then pi(X) = 0 by (5), so certainly t ≥ pi(X). As X ≅ X1 ≅ ⋅ ⋅ ⋅ ≅ Xt by (6),
we have Xt ≅X = P∞(X) by (4). If X is not stiff, pi(X) > 0 by (5), so pi(P (X)) = pi(X)−1.
Let us consider now the following diagram of dominant retractions, which of course is not
necessarily commutative. By 2.16 we have the vertical arrows Xi → P (Xi), and by our first
hypothesis we have the arrows Xi →Xi+1 at the top row. The slanted arrows Xi → P (Xi−1),
and then also the arrows P (Xi)→ P (Xi+1) at the bottom row, come from 2.19.

X X1 X2 ⋯⋯ Xt−1 Xt

⋯⋯
P (X) P (X1) P (X2) ⋯⋯ P (Xt−1) P (Xt).

As Xt is stiff, Xt → P (Xt−1) is an iso by (6). Thus P (X) #t−1ÐÐ→ P (Xt−1) with P (Xt−1) stiff.
By the inductive hypothesis we obtain that t − 1 ≥ pi(P (X)) = pi(X) − 1, so t ≥ pi(X).
Also by induction we know that P (Xt−1) ≅ P∞(P (X)) = P pi(P (X))(P (X)), but then we
have that Xt ≅ P (Xt−1) ≅ P pi(P (X))+1(X) = P pi(X)(X) = P∞(X), which ends the proof. ◻
In their Proposition 2.60, Hell and Nešetřil [25] proved that each graph dismantles, up to
isomorphy, to a unique stiff graph. Our 2.20 yields a new proof (and statement) of that:

Corollary 2.21. Up to isomorphy the only stiff graph to which A dismantles is P∞(A). ◻
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3. The Relational Category

The relational category of simple graphs (to be denoted by Gr) has the same objects as the
category G of finite simple graphs, but its morphisms are the graph relations. In the context
of clique graphs, graph relations first appeared in [30], but [47] used implicitly the related
notion of spans (see §3.4). Graph relations are useful for the study of maps and constructions
in the graph category G, and they are so close to graph maps that from the homotopical
point of view both categories G and Gr turn out to be essentially the same (see 4.12).

3.1. The graph of relations. A graph relation α ∶ X → Y is a particular kind of vertex
relation α ⊆ V (X) × V (Y ), but instead of writing “(x, y) ∈ α” we use “y ∈ α(x)”. Thus the
image of S ⊆ V (X) under α is α(S) = ⋃{α(s) ∣ s ∈ S} ⊆ V (Y ). All our relations are defined
everywhere (i.e. α(x) ≠ ∅ ∀x ∈X), so they are in fact multivalued functions. A graph relation
(or just a relation) α ∶ X → Y is any multivalued function α ⊆ V (X) × V (Y ) which satisfies
the equivalent conditions in Lemma 3.1 below. For condition (5) in the lemma, let us define
the common neighborhood of a set S ⊆X as N[S] = ⋂s∈S N[s]. Then we have:

Lemma 3.1. For a multivalued function α ⊆ V (X) × V (Y ) the following are equivalent:
(1) x ∼ x′ in X implies y ∼ y′ in Y for all y ∈ α(x) and y′ ∈ α(x′).
(2) α(C) is a complete of Y for each small complete C of X.
(3) α(C) is a complete of Y for each complete C of X.
(4) α(C) ∪ α(D) is a complete of Y if C ∪D is complete in X.
(5) α(N[x]) ⊆ N[α(x)] for all x ∈X. ◻

If X and Y are graphs we shall denote by Gr(X,Y ) the set of all graph relations α ∶X → Y .
If α ∈ Gr(X,Y ) and β ∈ Gr(Y,Z) the composite β○α ∶X → Z is given by (β○α)(x) = β(α(x))
and by 3.1.3 is again a graph relation. With this composition Gr is a category. Each
graph morphism is a graph relation (cf. 2.2 and 3.1) so G(X,Y ) is a subset of Gr(X,Y ).
Morphism composition is a particular case of composition of relations, and each identity
map 1X ∈ G(X,X) is still the identity in Gr(X,X), so G is a subcategory of Gr.

Edges among graph relations are similar to edges among graph morphisms (cf. 2.5). Two
relations α,β ∈ Gr(X,Y ) are adjacent (α ∼ β) if they satisfy the equivalent conditions in 3.2:

Lemma 3.2. Let α,β ∈ Gr(X,Y ). Then the following conditions are equivalent:
(1) x ∼ x′ and y ∈ α(x) and y′ ∈ β(x′) imply y ∼ y′ for all x,x′ ∈ V (X).
(2) α(C) ∪ β(C) is a complete of Y for each small complete C of X.
(3) α(C) ∪ β(C) is a complete of Y for each complete C of X.
(4) α(C) ∪ β(D) is a complete of Y if C ∪D is complete in X.
(5) α(N[x]) ⊆ N[β(x)] for all x ∈X. ◻

Now that each set of relations Gr(X,Y ) is a graph we have the analog of 2.6: The proof is
the same as that of 2.6 but using 3.2.3 instead of 2.5.3 and 3.2.4 instead of 2.5.4:

Proposition 3.3. The composition map ○ ∶ Gr(Y,Z)×Gr(X,Y )→ Gr(X,Z) that sends (β,α)
to β ○ α is a graph map. In particular, β ∼ β′⇒ β ○ α ∼ β′ ○ α and α ∼ α′⇒ β ○ α ∼ β ○ α′. ◻
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Each Gr(X,Y ) is partially ordered by ⊆ and we have α ⊆ β ⇔ α(x) ⊆ β(x) for all x ∈X.

Lemma 3.4. Gr(X,Y ) is a lower set in the poset of multivalued functions: If α ∈ Gr(X,Y )
any multivalued function β ⊆ V (X) × V (Y ) with β ⊆ α is also a graph relation β ∈ Gr(X,Y )
and in particular any function f ∶ V (X)→ V (Y ) with f ⊆ α is a graph morphism.
Proof. By 3.1.3: If C ⊆X is complete so is α(C) and also β(C) since ∅ ≠ β(C) ⊆ α(C). ◻
3.2. Maps meet relations. As any function is a relation we have G(X,Y ) ⊆ Gr(X,Y ).
Indeed, comparing 3.1 and 3.2 with 2.2 and 2.5 and using 3.4 for the last claim we have:

Lemma 3.5. The inclusion map I = IX,Y ∶ G(X,Y ) ↪ Gr(X,Y ) is a graph morphism. It is
in fact an embedding whose image consists of the minimal elements of Gr(X,Y ). ◻
Given two morphisms f, g ∶ X → Y their union f ∪ g ⊆ V (X) × V (Y ) sends each x ∈ X to
f(x) ∪ g(x) = {f(x), g(x)} ⊆ Y . But we do not necessarily have that α = f ∪ g ∈ Gr(X,Y ).
Since α(C) = f(C) ∪ g(C) for each vertex set C ⊆X, comparing 2.5.3 and 3.1.3 we get:

Lemma 3.6. If f, g ∈ G(X,Y ) then f ∼ g in G(X,Y ) if and only if f ∪ g ∈ Gr(X,Y ). ◻

Comparing now 3.2.3 with 3.1.3 we generalize 3.6 to relations:

Lemma 3.7. If α,β ∈ Gr(X,Y ) then α ∼ β in Gr(X,Y ) if and only if α ∪ β ∈ Gr(X,Y ). ◻
Notice that by 3.4 two relations α,β ∈ Gr(X,Y ) have a common upper bound γ in Gr(X,Y )
(that is α ⊆ γ and β ⊆ γ) if and only if α ∪ β ∈ Gr(X,Y ). Therefore the graph Gr(X,Y ) is
by 3.7 just the upper bound graph, as defined in [44], of the poset Gr(X,Y ).
Given a relation α ∈ Gr(X,Y ) a selection of α is any morphism f ∈ G(X,Y ) with f ⊆ α.

Lemma 3.8. Any relation has a selection. In fact for a given α ∈ Gr(X,Y ) any choice
function f ∶ V (X)→ V (Y ) of the sets α(x) ⊆ V (Y ) is by 3.4 a selection of α. ◻
The graph structures in G(X,Y ) and Gr(X,Y ) are nicely related via selections:

Lemma 3.9. If α ⊆ β ∈ Gr(X,Y ) then α ∼ β. In particular we have f ∼ β in Gr(X,Y )
whenever f ∶X → Y is a selection of β ∈ Gr(X,Y ).
Proof. Since α ∪ β ⊆ α we can apply 3.7. ◻

Lemma 3.10. Let α,β ∈ Gr(X,Y ). Then the following conditions are equivalent:
(1) α ∼ β in Gr(X,Y ).
(2) f ∼ g in G(X,Y ) for all selections f ⊆ α and g ⊆ β.

Proof. Assume (1). Since f ∪ g ⊆ α ∪ β ∈ Gr(X,Y ) by 3.7, f ∪ g ∈ Gr(X,Y ) by 3.4 and
f ∼ g in G(X,Y ) by 3.6. Now assume (2). Let x ∼ x′ in X and take y ∈ α(x) and y′ ∈ β(x′).
By 3.8 there are selections f ⊆ α and g ⊆ β such that f(x) = y and g(x′) = y′. We have then
by (2) that f ∼ g in G(X,Y ). Hence y ∼ y′ by 2.5.1 and finally α ∼ β by 3.2.1. ◻
3.3. Elementary adjacencies. Handy for calculations, elementary edges define the same
connected components by 3.11 below. Call f, g ∈ G(X,Y ) elementarily adjacent (f ∼e g)
if there is some x0 ∈ X with f(x0) ∼ g(x0) and f(x) = g(x) for x ≠ x0. For example, the
elementary neighbors of 1X ∈ End(X) are just the dominant pinches (see 2.7 and 2.9).
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As indicated by the name f ∼e g implies f ∼ g : Indeed, let C = {x,x′} ⊆X be complete and
let α = f ∪g. By 2.2.2 f(C) and g(C) are complete. If x0 ∉ C then α(C) = f(C) is complete,
and if x0 ∈ C then α(C) = f(C)∪g(C) is complete because f(x0) ∼ g(x0). Then α ∈ Gr(X,Y )
by 3.1.2, so f ∼ g by 3.6. The connected components of G(X,Y ) are important for homotopy
(see §4.1 below), and elementary adjacencies are enough to define those components:

Proposition 3.11. Assume that f ∼ g in G(X,Y ). Then for some finite number of graph
morphisms fi ∈ G(X,Y ) we have f = f0 ∼e f1 ∼e f2 ∼e ⋯ ∼e fr = g.
Proof. If f(x0) ≠ g(x0), let f1 ∶ V (X) → V (Y ) be given by f1(x) = f(x) for x ≠ x0 and
f1(x0) = g(x0). Let α = f ∪ g. By 3.6 we have that α ∈ Gr(X,Y ). Then f1 ∶ X → Y is a map
by 3.4 because f1 ⊆ α. Using that f ∪ f1 ⊆ α and f1 ∪ g ⊆ α we get from 3.6 that f ∼ f1 ∼ g.
By 2.5.1 we have that f(x0) ∼ f1(x0) and thus f ∼e f1. We finish by induction. ◻
Given f ∈ G(X,Y ), to construct a map g with f ∼e g in practice one picks the exceptional
vertex x0 ∈X and replaces f(x0) with some vertex y0 ∈ Y such that f(N[x0]) ⊆ N[y0]:

Lemma 3.12. Let f ∈ G(X,Y ), x0 ∈X, and g ∶ V (X)→ V (Y ) be such that f(x) = g(x) for
all x ∈X ∖ x0. Then f(N[x0]) ⊆ N[g(x0)] implies that g ∈ G(X,Y ) and f ∼e g.
Proof. Let x ∼ x′. If x0 ∉ {x,x′}, g(x) = f(x) ∼ f(x′) = g(x′). If x0 ∈ {x,x′} put x0 = x′.
As g(N[x0]) = g(N(x0))∪{g(x0)} = f(N(x0))∪{g(x0)} ⊆ N[g(x0)] by 2.5.5 and x ∈ N[x0],
g(x) ∈ N[g(x0)], i.e. g(x) ∼ g(x0) = g(x′). By 2.2.1, g is a map. As f(x0) ∼ g(x0), f ∼e g. ◻

3.4. Strong retractions and spans. The converse α† ∶ X → A of a relation α ∶ A → X is
given by a ∈ α†(x)⇔ x ∈ α(a). Note that even if α is a graph relation α† need not be so.
We are interested here in those graph morphisms r ∶ A → X whose converse r† ∶ X → A is
a graph relation. Notice that r must begin by being vertex-surjective for r†(x) = r−1(x) to
be defined for all x ∈ X. In fact r needs to be also edge-surjective and even more: it must
be a retraction since r† ∈ Gr(X,A) implies by 3.8 that there is a selection s ∶ X → A of r†

and then s, for which r ○ s = 1X holds, is a section of r. The graph projection r ∶ A→X will
be called a strong retraction when its converse r† ∶ X → A is a graph relation. Somewhat
surprisingly, this coincides with the previously studied notion of a twinning retraction:

Proposition 3.13. For a graph projection r ∈ G(A,X) the following are equivalent:
(1) r† ∶X → A is a graph relation (i.e. r ∶ A→X is a strong retraction),
(2) r−1(C) ⊆ A is complete for any complete C ⊆X,
(3) r−1(C) ⊆ A is complete for any small complete C ⊆X,
(4) all the fibers r−1(x)—the equivalence classes under Ker(r)—are twinsets, and
(5) r ∶ A→X is a twinning retraction ◻

Proof. r†(C) = r−1(C) if C ⊆ V (X), so (2) and (3) are conditions 3.1.3 and 3.1.2 for r†

and (1) ⇔ (2) ⇔ (3). By the twin of 2.12 we have (4) ⇔ (5). To prove (3) ⇒ (4) take
x ∈ X and a, a′ ∈ r−1(x). By symmetry a′ ≼ a will imply a ≈ a′. Let b ∈ N[a′]. Put y = r(b).
As y ∈ N[r(a′)] = N[x] by 2.2.5 C = {x, y} ⊆ X is complete. Then r−1(C) = r−1(x) ∪ r−1(y)
is complete by (3), so a ∼ b, b ∈ N[a], and a′ ≼ a. To prove (4) ⇒ (3) let C = {x, y} ⊆ X
be complete. Since r is edge-surjective there exist a ∈ r−1(x) and b ∈ r−1(y) with a ∼ b.
If a′ ∈ r−1(x) and b′ ∈ r−1(y), a′ ≈ a and b ≈ b′ by (4), so a ∼ b implies a′ ∼ b′. As in addition
the twinsets r−1(x) ≠ ∅ and r−1(y) ≠ ∅ are complete r−1(C) = r−1(x)∪ r−1(y) is complete. ◻
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A graph span from X to Y in G is an ordered pair (q, h) of maps h ∶ A → Y and q ∶ A → X
where the left leg q ∶ A→X is a strong retraction. Strong retractions (via 3.13.2 and 3.13.3)
and also graph spans were introduced by Neumann-Lara for the unpublished proofs of his
K-divergence results in [47]. Those proofs were eventually done with relations in [30].

A

X Y

q h

A

X Y

hq†

α

Figure 1. A graph span (q, h) and the graph relation α = h ○ q† defined by (q, h).

Proposition 3.14. The relation α ⊆ V (X) × V (Y ) is a graph relation α ∶ X → Y if and
only if α = h ○ q† for some graph span (q, h) from X to Y .
Proof. Let (q, h) be a graph span from X to Y with α = h ○ q†. Since q is a strong
retraction q† is a graph relation and therefore α = h ○ q† ∈ Gr(X,Y ). If α ∈ Gr(X,Y ) let
A = ⟨α⟩ = ⟨{(x, y) ∣ x ∈X,y ∈ α(x)}⟩ P X × Y . Consider the restrictions q = (πX)∣ ∶ A → X
and h = (πY )∣ ∶ A → Y . We will show first that (q, h) is a graph span. Since α is defined
everywhere q is vertex-surjective. Let C be complete in X. By 3.1.3 α(C) is complete in Y .
Then q−1(C) is complete in A as ∅ ≠ q−1(C) ⊆ C ×α(C) and C ×α(C) is complete in X ×Y .
Thus by 3.1.3 q† ∶ X → A is a graph relation and q is a strong retraction. Hence (q, h) is a
graph span from X to Y . Finally we only need to observe that for any x ∈ X we have
(h ○ q†)(x) = h(q†(x)) = πY ({x} × α(x)) = α(x) and therefore h ○ q† = α. ◻

4. Homotopy

4.1. Homotopy in graphic categories. Graph homotopy makes sense in both categories
G and Gr as we can consider homotopy of graph morphisms and also of graph relations. Both
settings get unified under the notion of a graphic category, or a category enriched over G.
A category A is a graphic category if each set of morphisms A(A,B) is endowed with a
fixed graph structure (a set of edges, or a symmetric, reflexive binary relation ∼) in such a
way that for any A,B,C ∈ ob(A) the function M ∶ A(B,C) ×A(A,B) → A(A,C) given by
M(g, f) = g ○f is a graph morphism. That is, g ∼ g′ in A(B,C) and f ∼ f ′ in A(A,B) imply
that g ○ f ∼ g′ ○ f ′ in A(A,C). By 2.6 and 3.3 both G and Gr are graphic categories.

In a graphic category A two morphisms f, g ∈ A(A,B) are homotopic (denoted by f ≃ g)
if f and g lie in the same connected component of the graph A(A,B). Thus f ≃ g means
that there is a walk f = h0 ∼ h1 ∼ h2 ∼ ⋯ ∼ hn = g in A(A,B) or, equivalently, some morphism
h ∶ In → A(A,B) with h(0) = f and h(n) = g, also called a walk from f to g. In this situation
we say (see [13]) that f and g are n-homotopic: it takes at most n edges to get from f to g.
Homotopy is an equivalence relation in each A(A,B), and it is the transitive closure of ∼.
If A and B are graphic categories, a functor F ∶ A → B will be called a graphic functor if
F = FA,B ∶ A(A,B) → B(F (A), F (B)) is a graph map for all A,B ∈ ob(A). For instance,
the inclusion functor I ∶ G ↪ Gr is a graphic functor by 3.5. Any graphic functor F ∶ A → B
between graphic categories sends homotopic A-morphisms to homotopic B-morphisms.

A congruence on a category C is an equivalence relation ≡ on each set C(A,B) such that
whenever g ≡ g′ in C(B,C) and f ≡ f ′ in C(A,B) we have that g ○ f ≡ g′ ○ f ′ in C(A,C).
The kernel of any functor G ∶ C → D, given by g ≡ g′⇔ G(g) = G(g′), is a congruence on C.
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Proposition 4.1. The homotopy relation ≃ is a congruence on any graphic category A.
In particular, it is a congruence on both categories G and Gr.
Proof. Let g ≃ g′ in A(B,C) and f ≃ f ′ in A(A,B). Adding loops as needed, we have
walks g = h0 ∼ h1 ∼ h2 ∼ ⋯ ∼ hn = g′ in A(B,C) and f = k0 ∼ k1 ∼ k2 ∼ ⋯ ∼ kn = f ′ in A(A,B).
Since A is graphic, g ○ f = h0 ○ k0 ∼ h1 ○ k1 ∼ h2 ○ k2 ∼ ⋯ ∼ hn ○ kn = g′ ○ f ′ in A(A,C). ◻
The homotopy category of a graphic category A is denoted by hA and it is the quotient
category of A modulo the homotopy congruence: hA = A /≃ . This is a particular case of the
quotient category C/ ≡ of a category C modulo a congruence ≡ on C, see II, §8 in [42]. We
recall the details, which work identically in the general case. The objects of hA are the same:
ob(hA) = ob(A), but hA(A,B) = {[f] ∣ f ∈ A(A,B)} for all A,B ∈ ob(hA) where [f] is the
homotopy class of f . The composition is [g] ○ [f] = [g ○ f] whenever it makes sense, and the
identity in hA(A,A) is [1A]. The projection functor P = P

A
∶ A→ hA sends each morphism

to its homotopy class: PA,B ∶ A(A,B)→ hA(A,B) is given by PA,B(f) = P (f) = [f].
Lemma 4.2. Let C,D be any categories and let A,B be graphic categories. Then:

(1) If ≡ is a congruence in C and G ∶ C → D is a functor such that f ≡ g⇒ G(f) = G(g),
then there is a unique functor G′ ∶ C/≡→ D making diagram (a) commute.

(2) If F ∶ A→ B is a graphic functor, then there is a unique functor hF ∶ hA→ hB which
makes diagram (b) commute.

(a) ∶
C

C/≡ D

PC
G

G′

(b) ∶
A B

hA hB.

F

PA PB

hF

Necessarily, G′([f]) = G(f) for [f] ∈mor(C/≡) and hF ([f]) = [F (f)] for f ∈mor(hA).
Proof. Part (1) is standard and easy [42, II,§8]. Part (2): if f ≃ g in A, F (f) ≃ F (g) in B
and PB(F (f)) = PB(F (g)) in hB. Apply now part (1) to G = PB ○ F and take hF = G′. ◻

4.2. The adjoint definition of homotopy. From now on we shall confine our attention
to the graph categories G and Gr. In them we can recast homotopy in terms of cylinders.
Lemma 4.3. For any three graphs X,I, Y ∈ G there is a natural graph isomorphism

λ ∶ G(X × I, Y )→ G(I, G(X,Y ))
which is defined by λ(H)(i)(x) =H(x, i) for all H ∈ G(X × I, Y ), i ∈ I, and x ∈X. ◻

The above result is fairly standard and it is proved in [13, 7.3] for the larger category G±.
The proof is essentially the same. We just point out that the role played by G(X,Y ) here
corresponds in [13] to the larger (and a little less natural) Cartesian exponential graph Y X .

The cylinder of height n over X ∈ G is the product X × In. Its i-th slice is X × {i}. The
embedding σi = (−, i) ∶X →X × In of X into this slice is given by σi(x) = (x, i) as in §2.2.

Proposition 4.4. Two morphisms f, g ∶ X → Y are n-homotopic if and only if there is a
graph morphism H ∶X × In → Y such that f =H ○ σ0 and g =H ○ σn.
Proof. Let I = In, H ∈ G(X × I, Y ) and h = λ(H) ∈ G(I,G(X,Y )), where λ is as in 4.3.
Since h(i)(x) = H(x, i) for all i ∈ I, H ○ σ0 = H(−,0) = h(0) and H ○ σ1 = h(1). Then h is a
walk in G(X,Y ) from f to g if, and only if, H satisfies the conditions in the statement. ◻
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The map H in 4.4 is called a homotopy from f to g. It is a discrete version in G of the
usual notion of a homotopy among continuous maps in elementary topology. The analog
of 4.4 in Gr is 4.6, whose proof is the same but uses 4.5 instead of 4.3. The proof of 4.5 is
quite similar to that of 4.3. We will skip the straightforward verifications for both 4.5 and 4.6.

Lemma 4.5. Given X,I ∈ G, Y ∈ Gr there is a natural graph isomorphism
ψ ∶ Gr(I(X × I), Y )→ G(I,Gr(I(X), Y ))

which is given by ψ(H)(i)(x) = H(x, i) ⊆ Y for all H ∈ Gr(I(X × I), Y ), i ∈ I and x ∈X. ◻

Technicalities apart, the inclusion functor I ∶ G ↪ Gr occurs in 4.5 to stress the fact that the
product X × I is taken in G. In Gr it could be nonexistent, as I1 × I1 can be shown to be.

Proposition 4.6. Two graph relations α,β ∶X → Y are n-homotopic if and only if there is
a graph relation H ∶X × In → Y (X × In taken in G) such that α = H ○ σ0 and β = H ○ σn. ◻
Prisner introduced in [52] another kind of homotopy in G, namely topological homotopy via
the flag complex [33, 36, 37]. Let us show that graph homotopy, due to Dochtermann [13]
and studied here, is a finer relation. The flag complex ∆(X) has the same vertices as X and
its simplices are the completes of X. Then ∣∆(X)∣, the (geometric) realization of ∆(X), is
an object of the category T of topological spaces. By 2.2.3 any f ∈ G(X,Y ) is a simplicial
map ∆(f) ∶ ∆(X) → ∆(Y ), so it induces a continuous function ∣∆(f)∣ ∶ ∣∆(X)∣ → ∣∆(Y )∣.
In fact ∣∆( )∣ ∶ G → T is a functor that helps us represent graphs as topological spaces.
If H ∶ X × In → Y is a homotopy from f to g in G(X,Y ) as in 4.4, consider the continuous
function ∣∆(H)∣ ∶ ∣∆(X × In)∣ → ∣∆(Y )∣. It turns out that ∣∆(X × In)∣ is not homeomorphic
to the topological product ∣∆(X)∣× ∣In∣ ≅ ∣∆(X)∣× I, but it is homotopy equivalent to it and
in essence ∣∆(H)∣ is a topological homotopy H ∶ ∣∆(X)∣ × I → ∣∆(Y )∣ from ∣∆(f)∣ to ∣∆(g)∣.
Then the functor ∣∆( )∣ preserves homotopy: f ≃ g implies that f and g are also homotopic
when seen as continuous maps ∣∆(X)∣ → ∣∆(Y )∣ (see §4 in [33] for details). We will resume
the comparison of graph homotopy with flag complex homotopy at the end of §4.4 below.

4.3. First characterizations. Homotopy, both of morphisms and of relations, is described
in 4.7 and 4.8 in terms of the partial order on Gr(X,Y ) and also, via selections, in 4.9, 4.10,
and 4.11. The homotopy categories hG and hGr will be shown to be isomorphic in 4.12.
The following two results, apart from using 3.4, stem directly from 3.6 and 3.7:
Proposition 4.7. Two graph maps f, g ∈ G(X,Y ) are homotopic if and only if there exist
some morphisms fi ∈ G(X,Y ) and also some graph relations αi ∈ Gr(X,Y ) in such a way
that we have f = f1 ⊆ α1 ⊇ f2 ⊆ α2 ⊇ ⋯ ⊆ αs−1 ⊇ fs = g. ◻

Proposition 4.8. Two graph relations α,β ∈ G(X,Y ) are homotopic if and only if there
exist some relations αi ∈ Gr(X,Y ) such that α = α1 ⊆ α2 ⊇ α3 ⊆ α4 ⊇ ⋯ ⊆ αs−1 ⊇ αs = β. ◻

Lemma 4.9. If α ⊆ β ∈ Gr(X,Y ) then α ≃ β by 3.9. In particular f ≃ β in Gr(X,Y )
whenever f ∶X → Y is a selection of β ∈ Gr(X,Y ). ◻

Proposition 4.10. For any relations α,β ∈ Gr(X,Y ) the following conditions are equivalent:
(1) α ≃ β in Gr(X,Y ).
(2) f ≃ g in G(X,Y ) for any chosen selections f ⊆ α and g ⊆ β.
(3) f ≃ g in G(X,Y ) for some given selections f ⊆ α and g ⊆ β.
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Proof. Assuming (1) take a walk α = α0 ∼ α1 ∼ ⋯ ∼ αn = β in Gr(X,Y ) and pick selections
fi ⊆ αi where f0 = f and fn = g are those chosen in (2). We have a walk f = f0 ∼ f1 ∼ ⋯ ∼ fn = g
in G(X,Y ) by 3.10, so f ≃ g in G(X,Y ) and (2) holds. Now (2) implies (3) as any relation
has a selection by 3.8. If (3) holds, any walk f = f0 ∼ f1 ∼ ⋯ ∼ fn = g in G(X,Y ) can be
enlarged, by 3.9, to a walk α ∼ f ∼ f1 ∼ ⋯ ∼ g ∼ β in Gr(X,Y ), so α ≃ β in Gr(X,Y ). ◻
Corollary 4.11. For any two maps f, g ∈ G(X,Y ) the following conditions are equivalent:

(1) f and g are homotopic as morphisms in G(X,Y ).
(2) f and g are homotopic as relations in Gr(X,Y ). ◻

Theorem 4.12. The homotopy categories hG and hGr are isomorphic.
Proof. Denote by [f] the homotopy class of a morphism f ∈ G(X,Y ) and by [α]r that of a
relation α ∈ Gr(X,Y ). The inclusion functor I ∶ G ↪ Gr is graphic by 3.5, so by 4.2 it induces
a functor on the homotopy categories hI ∶ hG → hGr given by (hI)([f]) = [I(f)]r = [f]r.
For any f ∈ G(X,Y ) we have that [f] = [f]r ∩ G(X,Y ) by 4.11 and therefore hI is faithful.
Any class [α]r ∈ hGr(X,Y ) equals, by 4.9, the class [f]r of any of the selections f ∈ G(X,Y )
of α that exist by 3.8 and then hI is also full. Since hI is fully faithful, it is an equivalence
of categories, and being bijective (the identity) in objects it is an isomorphism of categories.
Observe that the inverse of hI is given by [α]r ↦ [f] where f is any selection of α. ◻

4.4. Homotopy equivalences. As any congruence does, homotopy induces an equivalence
relation among graphs, namely being isomorphic in the quotient category. Thus we say that
the graphs X and Y are homotopy equivalent (or have the same homotopy type) and denote
it by X ≃ Y if there are morphisms (or relations, see 3.10 or 4.12) f ∶X → Y and g ∶ Y →X
such that g○f ≃ 1X and f ○g ≃ 1Y . In this case we say that f and g are homotopy equivalences,
each of them a homotopy inverse of the other, or just that f and g are homotopy inverses.

All isomorphisms are homotopy equivalences, and the latter share with isomorphisms the
two out of three property: If f and g are composable morphisms and two of f , g and g ○ f
are homotopy equivalences, so is the third. If f ∈ End(A) is a domination f ≃ 1A by 2.7,
so f is by 4.1 homotopically self-inverse: f ○f ≃ 1A ○1A = 1A and so f ∶ A→ A is a homotopy
equivalence. Another example: any twinning retraction p ∶ A→X is a homotopy equivalence.
Indeed, p† ∈ Gr(X,A) by 3.13 and clearly p ○ p† = 1X . As p† ○ p ⊇ 1A we get p† ○ p ≃ 1A by 4.9.
Thus p and p† (or p and any selection of p†) are homotopy inverses. This can be generalized:

Lemma 4.13. All dismantlings and assemblings are homotopy equivalences. The following
are important particular cases of dismantlings and assemblings:

(1) folds r ∶ A→X and antifolds s ∶X → A,
(2) dominant retractions r ∶ A→X and dominant sections s ∶X → A,
(3) paring retractions r ∶ A→ P i(A) and paring sections s ∶ P i(A)↪ A (1 ≤ i ≤ pi(A)).

Proof. For any dominant retraction r ∶ A→X there is a dominant section s ∶X → A (and
viceversa) such that r○s = 1X and e = s○r is a domination. By 2.7, e ∼ 1A, so e ≃ 1A and thus
r and s are homotopy inverses. As folds (antifolds) are dominant retractions (sections), they
are homotopy equivalences. Dismantlings (assemblings) are compositions of folds (antifolds),
hence equivalences. The maps in (2) and (3) are particular cases by 2.14 and 2.16. ◻
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Lemma 4.14. Let f ∈ End(A) be an acyclic domination with stability index s(f) = k > 0, let
B = f(A) and g = f ∣∣ ∶ B → B. Then g ∈ End(B) is an acyclic domination with s(g) = k − 1.
Proof. Since g is acyclic with s(g) = k−1 by A.3.2, we only need to prove, given f(x) ∈ B,
that f(x) ≼ g(f(x)) in B, that is f(x) ≼B f 2(x). Taking f(y) ∈ B with f(y) ∼B f(x) we will
show that f(y) ∼B f 2(x). As f ∣ ∶ A → B is a graph projection, for some vertices x′, y′ ∈ A
we have f(x′) = f(x), f(y′) = f(y) and x′ ∼A y

′. Then, as y′ ∼A x
′ and x′ ≼A f(x′) we have

that y′ ∼A f(x′) = f(x). Now 2.2.1 applied to f ∣ ∶ A→ B yields f(y) = f(y′) ∼B f 2(x). ◻

Theorem 4.15. Let f ∈ End(A) be a domination. Then r = f ∣ ∶ A → f(A) is a homotopy
equivalence. There is also a homotopy equivalence q ∶ A→ ⟨f(A)⟩.
Proof. In the decomposition f = fa ○ fb both the acyclic part fa and the bijective part fb

are dominations (see §2.4) and the isomorphism fb is an equivalence. As f(A) = fa(A) and
f ∣ = (fa ○fb)∣ = f ∣a ○fb we only need to prove the result for fa. Let then f = fa ≠ 1A be acyclic.
Then k = s(f) > 0 by A.3.1. If k = 1, f is idempotent also by A.3.1. As in this case r is
a dominant retraction, 4.13.2 applies. If k > 1, let B = f(A) and g = f ∣∣ ∶ B → B. By 4.14
g ∈ End(B) is an acyclic domination with s(g) = k−1. Both fk ∈ End(A) and gk−1 ∈ End(B)
are (clearly acyclic) dominations by 2.7, and s(fk) = s(gk−1) = 1 by A.3.3. Then by the k = 1
case both r1 = (fk)∣ ∶ A→ fk(A) and r2 = (gk−1)∣ ∶ B → gk−1(B) are homotopy equivalences.

A B

fk(A)

r

r1 r2

Note that gk−1(B) = gk−1(f(A)) = fk(A), so both r1 and r2 have indeed the same codomain.
We have r2 ○ r = r1 as these two maps send each a ∈ A to fk(a). Therefore r is a homotopy
equivalence by the two out of three property. For the second claim put e(x) = x if x ∈ f(a)
and e(x) = f(x) otherwise, so e ∶ A → A is an idempotent domination with e(A) = ⟨f(A)⟩.
Then the dominant retraction q = e∣ ∶ A→ ⟨f(A)⟩ is a homotopy equivalence by 4.13.2. ◻
Part “(1)⇒(4)” in the following result appeared as a consequence of Proposition 6.6 in [13]:
Theorem 4.16. For any graphs X,Y ∈ G the following conditions are equivalent:

(1) X ≃ Y .
(2) P∞(X) ≅ P∞(Y ).
(3) X dismantles to P∞(Y ).
(4) X and Y have a common dismantling Z.

Proof. By 2.21 (2)⇒ (3)⇒ (4), and also (4)⇒ (2) for, if both X and Y dismantle to Z,
we must have P∞(X) ≅ P∞(Z) ≅ P∞(Y ). We shall prove (1)⇔ (2): If X ≃ Y , by 4.13.3
P∞(X) ≃ X ≃ Y ≃ P∞(Y ), and thus there are homotopy equivalences f ∶ P∞(X) → P∞(Y )
and g ∶ P∞(Y ) → P∞(X) with f ○ g ≃ 1P∞(Y ) and g ○ f ≃ 1P∞(X). But P∞(X) and P∞(Y )
are stiff, so f ○g = 1P∞(Y ) and g○f = 1P∞(X) by 2.8, and hence P∞(X) ≅ P∞(Y ). Conversely,
if P∞(X) ≅ P∞(Y ) then P∞(X) ≃ P∞(Y ), so X ≃ P∞(X) ≃ P∞(Y ) ≃ Y by 4.13.3 again. ◻
Assuming that X ≃ Y, take equivalences f ∶X → Y, g ∶ Y →X with g ○f ≃ 1X and f ○g ≃ 1Y .
Then ∣∆(g)∣ ○ ∣∆(f)∣ = ∣∆(g ○ f)∣ = ∣∆(1X)∣ = 1∣∆(X)∣ and likewise ∣∆(f)∣ ○ ∣∆(g)∣ = 1∣∆(X)∣ ,
so ∣∆(X)∣ ≃ ∣∆(Y )∣ as topological spaces (see the end of §4.2 above). A stronger claim holds :
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Whenever X ≃ Y, the flag complexes ∆(X) and ∆(Y ) have the same simple homotopy type:
Note first that by 4.16.4 there is a sequence (known already in [13]) of folds and antifolds

X
r1Ð→X1

r2Ð→ ⋯→Xm−1
rmÐ→ Z

skÐ→ Yk−1 → ⋯
s2Ð→ Y1

s1Ð→ Y.

Each of these maps is equivalent to a special fold A→ A∖a or to a special antifold A∖a↪ A,
and so ∆(X) and ∆(Y ) have the same simple homotopy type. This follows from the proof
of Proposition 3.2 in [52]: in our notation, if a ∈ A is dominated, ∆(A) collapses to ∆(A∖a).
Now, if m > n > 3, the cyclic flag complexes ∆(Cm) and ∆(Cn) have the same simple
homotopy type, and ∣∆(Cm)∣ and ∣∆(Cn)∣ are even homeomorphic. However, Cm /≃ Cn

because Cm and Cn are stiff and cannot have a common dismantling as required by 4.16.4.
Hence “X ≃ Y ” is not implied by “∆(X) and ∆(Y ) have the same simple homotopy type,”
let alone by “∣∆(Cm)∣ and ∣∆(Cn)∣ are homotopy equivalent” (or even homeomorphic).

4.5. Further characterizations. These will be 4.18, 4.20 and 4.22. The starting point is:

Theorem 4.17. Let f, g ∈ G(X,Y ). Then f ∼ g if and only if there exist A ∈ G, a graph
morphism h ∶ A→ Y and liftings f̄, ḡ ∶X → A of f and g (that is h ○ f̄ = f and h ○ ḡ = g) such
that there is an order two bijective twination t ∶ A→ A for which ḡ = t ○ f̄ .

A

X Y

t

h

f

g

f̄

ḡ

The result also holds upon replacing “there is an order two bijective twination t ∶ A → A” in
the above first version of the statement by “there is an idempotent twination t ∶ A→ A.”
Proof. In both versions t ∼ 1A by 2.7, so g = h ○ ḡ = h ○ t ○ f̄ ∼ h ○ 1A ○ f̄ = h ○ f̄ = f by 2.6.
Conversely, if f ∼ g we have α = f ∪ g ∈ Gr(X,Y ) by 3.6 and, by 3.14, α = h ○ q† for some
graph span X

q←Ð A
hÐ→ Y . Let us define f̄ ∶ X → A. If x ∈ X, f(x) ∈ α(x) = h(q†(x)), so we

can choose some f̄(x) ∈ q†(x) with f(x) = h(f̄(x)). Then h ○ f̄ = f , and f̄ ∈ G(X,A) by 3.8.
We have also a selection ḡ ∶ X → A of q† with h ○ ḡ = g. From {f̄(x), ḡ(x)} ⊆ q†(x) = q−1(x)
two facts follow: First, all the transpositions tx = (f̄(x), ḡ(x)) are disjoint (q is single-valued)
so they commute with each other and their well-defined product t =∏x∈X tx is a permutation
of V (A) with t2 = 1A. Second, as q is a strong retraction its fibers are twinsets by 3.13, so
f̄(x) ≈ ḡ(x) and each tx ∈ End(A) is a twinning transposition. Thus t ∶ A→ A is a twination
of A by 2.7, and we have that t ○ f̄ = ḡ just by design. For the alternative version we use the
disjoint twinning pinches px = [f̄(x), ḡ(x)]. They commute with each other by A.1, so their
product t ∶ A→ A, which again satisfies t ○ f̄ = ḡ, is an idempotent twination by 2.9. ◻

Theorem 4.18. Let f, g ∈ G(X,Y ). Then f ≃ g if, and only if, for some n ∈ N we have:
(1) morphisms fi ∶X → Y for i = 0, . . . , n with f = f0 and fn = g,
(2) graphs A1,A2, . . . ,An and morphisms hi ∶ Ai → Y for i = 1, . . . , n,
(3) liftings f̄ i

i−1 , f̄
i
i ∶X → Ai of fi−1 and fi along hi ( fj = hi ○ f̄ i

j ) for i = 1, . . . , n,

(4) order two bijective twinations ti ∶ Ai → Ai such that ti ○ f̄ i
i−1 = f̄ i

i for i = 1, . . . , n.
This result also holds if we replace (4) by:

(4’) idempotent twinations ti ∶ Ai → Ai such that ti ○ f̄ i
i−1 = f̄ i

i for i = 1, . . . , n.
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Proof. Let f ≃ g. For n and the fi in (1) take a walk f = f0 ∼ f1 ∼ ⋯ ∼ fn = g in G(X,Y ).
Now n applications of 4.17 yield (2), (3) and (4) or (4’). For the converse, begin by fixing
an i ∈ {1, . . . , n}. By 2.7 we have 1Ai

∼ ti and then f̄ i
i−1 = 1Ai

○ f̄ i
i−1 ∼ ti ○ f̄ i

i−1 = f̄ i
i by 2.6. But

then fi−1 = hi ○ f̄ i
i−1 ∼ hi ○ f̄ i

i = fi again by 2.6. Thus f = f0 ∼ f1 ∼ f2 ∼ ⋯ ∼ fn = g and f ≃ g. ◻

Lemma 4.19. Let t ∈ End(A). If t is an order order two bijective twination it is a product of
twinning transpositions, and a product of twinning pinches if it is an idempotent twination.
Proof. This (and more) follows from the factorizations in §2.4. ◻
A family F of endomorphisms consists of a set FA ⊆ End(A) for each A ∈ G, but we shorten
“f ∈ FA for some A ∈ G” to just “f ∈ F .” E.g., “f ∈ F ⇒ f ≡ 1” means “f ∈ FA ⇒ f ≡ 1A.”
Also, if G is another such family, we will use “F ⊆ G” to signify that “FA ⊆ GA for all A ∈ G”.

Theorem 4.20. For any of the eight families of endomorphisms F = Fi described below
homotopy is the finest congruence on G which identifies the maps in F with identities.

F1 = {f ∣ f is a twinning transposition}
F2 = {f ∣ f is a twinning pinch}
F3 = {f ∣ f is an order two bijective twination}
F4 = {f ∣ f is an idempotent twination}
F5 = {f ∣ f is a dominant pinch}
F6 = {f ∣ f is a twination}
F7 = {f ∣ f is an idempotent domination}
F8 = {f ∣ f is a domination}

F8

F6 F7

F3 F4 F5

F1 F2

Proof. We have that F ⊆ F8 and (F8)A = N[1A] by 2.7, so f ∈ FA ⇒ f ∼ 1A ⇒ f ≃ 1A.
Hence the homotopy congruence ≃ does indeed identify each f ∈ FA with the identity 1A.
Let ≡ be a congruence in G such that f ∈ F ⇒ f ≡ 1. As F1 ⊆ F or F2 ⊆ F we have f ≡ 1 for
all f ∈ F1 or, alternatively, for all f ∈ F2. As ≡ is a congruence 4.19 yields f ≡ 1 for all f ∈ F3
or, in the other case, for all f ∈ F4. Let f ≃ g in G(X,Y ). We now need to show that f ≡ g.
We proceed by way of 4.18 using condition (4) if F1 ⊆ F and condition (4’) if F2 ⊆ F . Then
all ti ∈ F3 in our first case and all ti ∈ F4 in the other. In both cases we get that all 1Ai

≡ ti
and, as ≡ is a congruence, f̄ i

i−1 = 1Ai
○ f̄ i

i−1 ≡ ti ○ f̄ i
i−1 = f̄ i

i and fi−1 = hi ○ f̄ i
i−1 ≡ hi ○ f̄ i

i = fi for
all i = 1, . . . , n. Thus f = f0 ≡ f1 ≡ f2 ≡ ⋅ ⋅ ⋅ ≡ fn = g and f ≡ g by transitivity, as needed. ◻
Under some fairly general assumptions [19, 54] homotopy categories of a category C can be
described as localizations of C, and so can our homotopy category hG by 4.22 below. Recall
the definitions: A functor G ∶ C → D makes invertible a morphism s ∈ mor(C) if G(s) is
invertible (i.e. an isomorphism) in mor(D). If S ⊆ mor(C) is a class of C-morphisms, the
localization of C with respect to S (which always exists [19, I,1.1]) is a category S−1C together
with a functor PS ∶ C → S−1C having the following universal property: First, PS makes each
morphism in S invertible and, second, for any functor G ∶ C → D making all the morphisms
in S invertible there exists a unique functor G′ ∶ S−1C → D such that G = G′ ○ PS :

C

S−1C D.
PS

G

G′

By the universal property (PS, S−1C) is unique up to an isomorphism of categories.
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Lemma 4.21. Let (r, s) be a retraction-section pair in C with r ∶ A → X, s ∶ X → A, and
composition e = s ○ r ∶ A→ A. Then for any functor G ∶ C → D the following are equivalent:

(1) F (s) is invertible

(2) F (s)−1 = F (r)
(3) F (e) = 1F (A)

(4) F (r) is invertible

(5) F (r)−1 = F (s)
Proof. Since r ○ s = 1X we have F (r) ○ F (s) = F (r ○ s) = F (1X) = 1F (X). This is already
half of (2) and also half of (5). In both cases the other half is (3) which, as e = s○r, says that
F (s) ○ F (r) = F (e) = 1F (A). Thus (2) ⇔ (3) ⇔ (4), and these clearly imply (1) and (4).
Now, to prove that (1)⇒ (2), let h be the inverse of F (s), that is h = F (s)−1 ∶ F (A)→ F (X).
Then h = 1F (X) ○ h = F (r) ○F (s) ○ h = F (r) ○ 1F (A) = F (r), and therefore F (s)−1 = h = F (r).
In an entirely similar way one can clearly prove that (4)⇒ (5). ◻

Theorem 4.22. The homotopy category hG, with its projection functor PG ∶ G → hG, is the
localization of G with respect to S, where the class S ⊆mor(G) can be any of the following:

S1 = {r ∣ r is a twinning fold} S′1 = {s ∣ s is a twinning antifold}
S2 = {r ∣ r is a dominant fold} S′2 = {s ∣ s is a dominant antifold}
S3 = {r ∣ r is a twinning retraction} S′3 = {s ∣ s is a twinning section}
S4 = {r ∣ r is a dominant retraction} S′4 = {s ∣ s is a dominant section}
S5 = {r ∣ r is a dismantling} S′5 = {s ∣ s is an assembling}.

Proof. Fix i ∈ {1,2,3,4} and let f belong to Si or to S′i. Then f splits an idempotent
domination e as f ∈ S4 or f ∈ S′4. Hence e ≃ 1 by 4.20 because e ∈ F7. Thus PG(e) = [1], so
PG(f) is invertible by 4.21. For i = 5, the maps in S5 or S′5 are also made invertible by PG
because they are compositions of maps in S2 or S′2.

S2

S1 S4 S5

S3

G

hG D

PG
G

G′

S′2

S′5 S′4 S′1

S′3

Now let G ∶ G → D be a functor that makes the maps in S invertible, so G makes either the
maps in S1 or those in S′1 invertible. If e is a twinning pinch there is a splitting (r, s) of e
with r ∈ S1 and s ∈ S′1. As one of G(r) and G(s) is invertible, G(e) = 1 by 4.21. Recall that
the kernel of G is the congruence ≡ of G given by f ≡ g⇔ G(f) = G(g). As ≡ identifies the
maps in F2 with identities, the homotopy congruence is finer than the kernel of G by 4.20.
Then G factors uniquely trough PG by 4.2, just as we needed to show. ◻
We could include in 4.22 the class T of homotopy equivalences: PG ∶ G → hG makes the maps
in T invertible (tautologically) and in fact (PG, hG) is the localization of G with respect to T .
This class T is what is called in [19] the saturation of any of the classes S in 4.22.

5. Clique Graphs

Recall that the complete subgraphs of the graph X (or just the completes of X) are always
non-empty. A clique of X is a maximal complete of X. The clique graph of X is the
intersection graph K(X) of the cliques of X, so the vertices of K(X) are the cliques of X
and two cliques q1, q2 of X are adjacent in K(X) if and only if q1∩ q2 ≠ ∅. On the homotopy
category the operator K is a functor (§5.1), an old transformation becomes natural (§5.2),
and new concepts, techniques and results for clique behavior emerge (§5.3, §5.4, §5.5).
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5.1. The clique graph functor. Given a graph relation α ∶X → Y and a clique q ∈K(X),
α(q) is a complete of Y by 3.1.3 but it is not always a clique: α(q) is not necessarily maximal.
We define, as in [30], a graph relation K(α) ∶ K(X) → K(Y ) by sending each q ∈ K(X) to
all the cliques of Y containing α(q), that is K(α)(q) = {q̂ ∈K(Y ) ∣ α(q) ⊆ q̂}. Then K(α) is
indeed a graph relation, but K(α) is not necessarily a graph morphism even if α is a graph
morphism α = f ∶X → Y , as for some q ∈K(X) there can be several q̂ ∈K(Y ) with α(q) ⊆ q̂.
Note that K reverses inclusions: α ⊆ β ∶X → Y implies K(α) ⊇K(β) ∶K(X)→K(Y ).
The clique graph operator K ∶ obGr → obGr given by X ↦K(X) can be supplemented with
α ↦K(α) and thus K is an assignation of objects and morphisms K ∶ Gr → Gr. But it is not
a functor, as Figure 2 shows: Let h be the composite h = g1 ○ f1 = g2 ○ f2 ∶X → Z. Then one
would need that K(g1) ○K(f1) =K(h) =K(g2) ○K(f2), but this does not hold:

K(f1)

K(f2)

K(g2)

f1

f2 g1

g2

K(g1)

Y1

Z

X

Y2

K(X)

K(Y2)

K(Y1)

K(Z)

Figure 2. The operator K ∶ Gr → Gr is not a functor. Notice that in this example
we have h = g1 ○ f1 = g2 ○ f2 but, on the other hand, K(g1) ○K(f1) ≠K(g2) ○K(f2).

There is an older approach [47] to the action of K on maps: If f ∈ G(X,Y ) choose, for
each q ∈ K(X), some fK(q) ∈ K(Y ) with f(q) ⊆ fK(q). This map fK ∶ K(X) → K(Y ) is
not uniquely determined but it is always a selection of the relation K(f). Figure 2 shows
that this “single-valued version” K ∶ G → G also fails to be a functor, as f1, f2, g1 and g2
are maps and their images in Gr under K are maps again, so they are their only possible
selections. We can also write K(f) instead of fK even when fK is not unique: the context
usually helps one to decide whether K(f) ∈ G(K(X),K(Y )) or K(f) ∈ Gr(K(X),K(Y ))
is meant. For more clarity, however, we can use expressions such as “choose a selection of
K(f)” or “fix a map K(f)” when we refer to the older, single-valued version of K(f). By
§3.2 and §4.3 there is little difference between both versions K ∶ Gr → Gr & K ∶ G → G, even
less when passing to the homotopy categories hG and hGr which by 4.12 are isomorphic. The
isomorphism hG(X,Y )→ hGr(X,Y ) was given by [f]↦ [f]r and the inverse by [α]r ↦ [f] ,
where f ⊆ α is any selection of α. In what follows we shall simplify [ ]r to just [ ] .
Theorem 5.1. The clique graph operator K ∶ Gr → Gr is a functor up to homotopy. In other
words K ∶ hGr → hGr is a functor or, which in essence is the same, K ∶ hG → hG is a functor.
Proof. If α ≃ β in Gr(X,Y ) we have α = α1 ⊆ α2 ⊇ α3 ⊆ α4 ⊇ ⋯ ⊆ αs−1 ⊇ αs = β by 4.8.
Then we get K(α) ⊆ K(α1) ⊇ K(α2) ⊆ K(α3) ⊇ K(α4) ⊆ ⋯ ⊇ K(αs−1) ⊆ K(αs) ⊇ K(β), so
K(α) ≃ K(β) again by 4.8. Thus K ∶ Gr → Gr preserves homotopy and K ∶ hGr → hGr is
well-defined: the image of any [α] ∈ hGr(X,Y ), i.e. K([α]) = [K(α)] ∈ hGr(K(X),K(Y )),
does not depend on the chosen representative α of the homotopy class [α].
If α ∈ Gr(X,Y ), β ∈ Gr(Y,Z) and q ∈ K(X), let ˆ̂q ∈ (K(β) ○K(α))(q) = K(β)(K(α)(q)).
Since K(β)(K(α)(q)) = ⋃q̂∈K(α)(q)K(β)(q̂) there must be some q̂ ∈ K(α)(q) with β(q̂) ⊆ ˆ̂q.
As q̂ ∈K(α)(q) we have α(q) ⊆ q̂ and then (β ○ α)(q) = β(α(q)) ⊆ β(q̂) ⊆ ˆ̂q. Since ˆ̂q ∈K(Z),
we have ˆ̂q ∈K(β ○α)(q). Thus K(β)○K(α) ⊆K(β ○α), and K(β)○K(α) ≃K(β ○α) by 4.9.
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Hence K ∶ Gr → Gr preserves compositions up to homotopy, and for K ∶ hGr → hGr we have
K([β]○[α]) =K([β○α]) = [K(β○α)] = [K(β)○K(α)] = [K(β)]○[K(α)] =K([β])○K([α]).
If q ∈ K(X), 1X(q) = q is already a clique of X, so K(1X)(q) = q and K(1X) = 1K(X). But
then K([1X]) = [1K(X)], so K ∶ hGr → hGr preserves identities and hence it is a functor. ◻
The clique graph functor could be denoted by hK ∶ hG → hG, but then again we prefer to
use K instead of hK for simplicity’s sake. (See, however, “hK-behavior” in §5.3 below.)
Corollary 5.2. If X ≃ Y then K(X) ≃K(Y ). ◻

5.2. The star transformation. The star of a vertex x ∈ X is x∗ = {q ∈ K(X) ∣ x ∈ q}.
Stars of vertices have always been important for clique graphs. For instance, in [58, Thm.2],
Li = {hj ∣ gi ∈ Kj} is just g∗i . Also SG(x), in the notation of [14], is just x∗. By the way,
Escalante [14] originally defined the dominance relation u ≼ v by the condition u∗ ⊆ v∗,
and the equivalence of this with N[u] ⊆ N[v] has belonged to the folklore ever since [52].

Each x∗ is a set of cliques of X, but x ↦ x∗ is not a graph relation X → K(X): even for
the path I3 of length three 3.1.1 fails. Nevertheless, the cliques in x∗ intersect each other,
so x∗ is a complete of K(X) and we can then define the star relation C ∶ X → K2(X)
by C(x) = {Q ∈ K2(X) ∣ Q ⊇ x∗}. This is a graph relation: given a complete C ⊆ X,
C(C) = ⋃c∈C(C(c)) so, if Q,Q′ ∈ C(C) we have c, c′ ∈ C with Q ∈ C(c) and Q′ ∈ C(c ′). Thus
Q ⊇ c∗ and Q′ ⊇ c′∗, but c ∼ c ′ implies c, c ′ ∈ q for some q ∈K(X), and then q ∈ c∗∩c ′∗ ⊆ Q∩Q′
and Q ∩Q′ ≠ ∅. Then C(C) is a complete of K2(X) and thus C ∈ Gr(X,K2(X)) by 3.1.2.

We call any fixed selection of the star relation the star morphism and also denote it by C .
This causes no confusion and it is harmless: all star maps are homotopic by 4.10.

Theorem 5.3. The star relation (and the star morphism) C ∶ X → K2(X) is a natural
transformation from the identity functor to K2 on the homotopy category hGr ≅ hG.
Proof. Let f ∶ X → Y be a graph map and let us fix maps K(f) ∶ K(X) → K(Y ) and
K2(f) ∶ K2(X) → K2(Y ) (recall §5.1) and star maps CX ∶ X → K2(X), CY ∶ Y → K2(Y ).
We show that the next diagram commutes up to homotopy, so its image commutes in hG:

X K2(X)

Y K2(Y ).
f

CX

K2
(f)

CY

Let x ∼ x′ in X, x,x′ ∈ q ∈ K(X), and q̂ = K(f)(q) ∈ K(Y ). As x ∈ q, q ∈ x∗ ⊆ CX(x),
so q̂ = K(f)(q) ∈ K(f)(CX(x)) ⊆ K2(f)(CX(x)). As x′ ∈ q and f(q) ⊆ q̂, f(x′) ∈ q̂, so
q̂ ∈ CY (f(x′)). Thus K2(f)(CX(x)) ∩ CY (f(x′)) ≠ ∅, so K2(f)(CX(x)) ∼ CY (f(x′)) in
K2(Y ). By 2.5.1 (K2(f) ○ CX) ∼ (CY ○ f) in G(X,K2(Y )), hence K2(f) ○ CX ≃ CY ○ f . ◻
A graph is clique-Helly (see [14], [52]) if every family of pairwise intersecting cliques has a
non-empty intersection. The cliques of cliques of these graphs are always stars of vertices:
If Q is a clique of K(X) and x ∈ ⋂Q, then Q = x∗. But not all stars are cliques: one could
have x∗ ⊊ y∗. In fact, x∗ ⊆ y∗ ⇔ x ≼ y, so x∗ = y∗ ⇔ x ≈ y, and x∗ ∈ K2(X) if and only
if x̄ is a maximal twinhood class, so the restriction ψX = (CX)∣ ∶ P (X)→K2(X) of the star
relation to the pared graph (§2.7) of X is single-valued and vertex-bijective. But x∗ ∼ y∗
in K2(X) if and only if x, y ∈ q for some q ∈ K(X), if and only if x ∼ y in X, so ψX is an
isomorphism. We have just proved Satz 2 of [14]: If X is clique-Helly, then K2(X) ≅ P (X).
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Proposition 5.4. Let CH be the full subcategory of hG induced by the clique-Helly graphs.
Then the functor K2 is naturally isomorphic, over CH, to the identity functor 1CH.
Proof. Let X ∈ CH. By [14, Satz 1] K(X) ∈ CH, so K2 ∶ CH→ CH is a functor. The paring
section sX ∶ P (X)↪X is a homotopy equivalence (4.13.3) and CX○sX = ψX ∶ P (X)→K2(X)
is an isomorphism, so CX is a homotopy equivalence by the two out of three property. Then,
using 5.3, the restriction of C to CH is a natural isomorphism from 1CH to K2 over CH. ◻
5.3. Clique behavior. Let K0(X) = X, K1(X) = K(X), K2(X) = K(K1(X)), etc. The
K-orbit of X is OX = {Kn(X) ∣ n ≥ 0}. If OX contains only a finite number of graphs up to
isomorphy then Km(X) ≅Kn(X) for some m > n ≥ 0 and, if n and p =m−n are minimal, one
says that X converges (in n steps) to the p-periodic circuit {Kn(X),Kn+1(X), . . . ,Km−1(X)}
or just that X is K-convergent. In the remaining case X is said to be K-divergent.

As X ≅ Y implies ∣X ∣ = ∣Y ∣, X ∈ G is K-convergent if and only if the sequence ( ∣Kn(X)∣ )
is bounded or, equivalently, eventually periodic: indeed, if M ∈ N, ∣Kn(X)∣ can only visit
{1,2, . . . ,M} so many times without Kn(X) getting trapped in a circuit. Note that then X
is K-divergent just when ( ∣Kn(X)∣ ) is unbounded or, equivalently, ∣Kn(X)∣→∞ as n→∞.

The K-behavior of X can be either K-convergence or K-divergence, so we say that two
graphs have the same K-behavior whenever both are K-divergent or both are K-convergent.
This is a major topic in the theory of clique graphs, e.g. [12, 14, 18, 28, 40, 41, 43, 47, 48].
By 2.13 our dismantlings equal those in [17], a paper whose results will be very useful here.

Theorem 5.5. [17, Thm.5] If X dismantles to Z, X and Z have the same K-behavior. ◻

Theorem 5.6. If X ≃ Y , then X and Y have the same clique behavior. ◻
Proof. By 4.16, X and Y have a common dismantling Z, so 5.5 can be applied. ◻
The notion of clique behavior carries over to hG. The K-orbit of X in hG is the same class
OX ⊆ ob(G) = ob(hG), but one says that X is K-convergent in hG if OX contains only a finite
number of graphs up to isomorphy in hG. Isomorphy in hG is homotopy equivalence in G,
so X is K-convergent in hG if and only if OX only contains representatives from some finite
set of homotopy types of graphs. Otherwise, of course, X is K-divergent in hG. When we
refer to K-behavior without specifying in which category, our usual G is meant. As for hG,
we can also speak of hK-behavior, hK-convergence, etc. with the obvious meanings.

The order of an object X ∈ G is ∣X ∣ = ∣G(K1,X)∣. The analog in Gr is ∣Gr(K1,X)∣, which
equals the number of connected components of X and hardly serves as “the order” of X ∈ Gr.
If [X] ⊆ obG is the homotopy class of X, then P∞(X) ∈ [X] and P∞(Y ) ≅ P∞(X) for each
Y ∈ [X] so, as ∣P∞(Z)∣ ≤ ∣Z ∣ always, ∣P∞(X)∣ ≤ ∣Y ∣ for all Y ∈ [X] (see 2.21, 4.13.3, 4.16).
Then ∣P∞(X)∣, a construct in G, is the minimum order of the graphs in [X] and it can act
as “the order” of the object X of hG. We say that X ∈ G is K-convergent up to homotopy if
the sequence ( ∣P∞Kn(X)∣ ) is bounded, which is a condition on X in G. It follows that X is
K-convergent in hG if and only if X is K-convergent up to homotopy, and X is K-divergent
in hG if and only if X is K-divergent up to homotopy, i.e. ∣P∞Kn(X)∣→∞ as n→∞.

Note that hK-divergence implies K-divergence, as ∣P∞Kn(X)∣ ≤ ∣Kn(X)∣. Whether there is
any K-divergent graph X which is hK-convergent is an open problem: we only have partial
results for it (see §6 below). But by known results this same problem has an affirmative
answer in the setting of the topological (even simple) homotopy type of the flag complex:
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Let X be any of the graphs G0 of [27] reviewed, together with Gn ≅ Kn(X), in §5.5 below.
By [27], X is K-divergent. But, by [36], the topological homotopy type of ∣∆(Kn(X))∣ is the
same as that of the torus S1×S1 for all n. Indeed, all the flag complexes ∆(Kn(X)) have the
same simple homotopy type as ∆(X). Hence, using the topology of the flag complexes, X is
K-divergent and “homotopy-K-convergent.” However, this example X does not settle our
original problem: Kn(X) is stiff for all n ≥ 0 (see 5.13 below), so P∞(Kn(X)) =Kn(X) for
all n ≥ 0 by 2.17. Under this last condition K-divergence equals hK-divergence, and thus
the graph X is both K-divergent and hK-divergent, not K-divergent and hK-convergent.

5.4. Unbounded morphisms. The norm of f ∈ G(X,Y ) is ∣∣f ∣∣ = minf̂ ≃ f ∣Im(f̂)∣. This is
a homotopy invariant: f ≃ g implies ∣∣f ∣∣ = ∣∣g∣∣. Notice that ∣∣K(f)∣∣ is well-defined since
all possible choices of the map K(f), being selections of the relation K(f), are homotopic
by 4.10. The map f will be said to be an unbounded morphism if the sequence of norms
(∣∣Kn(f)∣∣) is unbounded. In this subsection we will shorten “r ≤ s and r ≤ t” to just “r ≤ s, t.”

Theorem 5.7. Given maps f, g, h with f ≃ g ○ h, we have that ∣∣f ∣∣ ≤ ∣∣g∣∣, ∣∣h∣∣.
Proof. Note first that ∣Im(f)∣ ≤ ∣Im(g)∣, ∣Im(h)∣ whenever f = g ○h. Now assume f ≃ g ○h.
Take ĝ ≃ g and ĥ ≃ h with ∣Im(ĝ)∣ = ∣∣g∣∣ and ∣Im(ĥ)∣ = ∣∣h∣∣. By 4.1 we have f ≃ g ○ h ≃ ĝ ○ ĥ,
and thus ∣∣f ∣∣ = ∣∣ĝ ○ ĥ∣∣ ≤ ∣Im(ĝ ○ ĥ)∣ ≤ ∣Im(ĝ)∣, ∣Im(ĥ)∣. Therefore ∣∣f ∣∣ ≤ ∣∣g∣∣, ∣∣h∣∣. ◻

Theorem 5.8. If f is unbounded and f ≃ g ○ h, then h and g are unbounded.
Proof. By 5.1 K, and then each Kn, are functors on hG. Hence Kn(f) ≃Kn(g) ○Kn(h).
But then ∣∣Kn(f)∣∣ ≤ ∣∣Kn(g)∣∣, ∣∣Kn(h)∣∣ by 5.7, and therefore g and h are unbounded. ◻

Theorem 5.9. If f ≃ g ○ h ○ k and g and k are homotopy equivalences, then ∣∣f ∣∣ = ∣∣h∣∣.
Proof. By 5.7, ∣∣f ∣∣ ≤ ∣∣g∣∣, ∣∣h ○ k∣∣ and also ∣∣h ○ k∣∣ ≤ ∣∣h∣∣, ∣∣k∣∣, so we get that ∣∣f ∣∣ ≤ ∣∣h∣∣. Take
homotopy inverses ḡ of g and k̄ of k. By 4.1 we have h = 1 ○ h ○ 1 ≃ ḡ ○ g ○ h ○ k ○ k̄ ≃ ḡ ○ f ○ k̄,
so using again 5.7 as above we get now that ∣∣h∣∣ ≤ ∣∣f ∣∣, and therefore ∣∣f ∣∣ = ∣∣h∣∣. ◻

Theorem 5.10. If f ∶X → Y is unbounded then X and Y are K-divergent in hG.
Proof. For each n ≥ 0 choose a graph map Kn(f) ∶ Kn(X) → Kn(X), a paring retraction
rn ∶Kn(Y )→ P∞Kn(Y ), and a paring section sn ∶ P∞Kn(X)↪Kn(X) (see §5.1 and 2.16).

Kn(X) Kn(Y )

P∞Kn(X) P∞Kn(Y )

Kn
(f)

rnsn

gn

Let gn = rn ○Kn(f) ○ sn. As rn and sn are homotopy equivalences by 4.13.3, we get by 5.9
that ∣∣gn∣∣ = ∣∣Kn(f)∣∣, and therefore the sequence (∣∣gn∣∣) is unbounded. Now we note that
∣∣gn∣∣ ≤ ∣Im(gn)∣ ≤ ∣P∞Kn(X)∣, ∣P∞Kn(Y )∣ and from this we obtain that ∣P∞Kn(X)∣ → ∞
and ∣P∞Kn(Y )∣→∞ when n→∞, but these mean that X and Y are hK-divergent. ◻

Theorem 5.11. ∣∣1X ∣∣ = ∣P∞(X)∣. In particular, ∣Im(f)∣ ≥ ∣P∞(X)∣ for any f with f ≃ 1X .
Proof. P∞(X) is stiff by 2.17, so by 2.8 we have that ∣∣1

P∞(X)∣∣ = ∣Im(1P∞(X))∣ = ∣P∞(X)∣.
Now take (see 4.13.3) paring equivalences r ∶ X → P∞(X) and s ∶ P∞(X) ↪ X such that
1

P∞(X) = r ○ s = r ○ 1X ○ s. Finally, by 5.9 we obtain ∣∣1X ∣∣ = ∣∣1P∞(X)∣∣ = ∣P∞(X)∣. ◻
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5.5. An application. Using the graphs Gn (n ≥ 0) of [27], we shall show that certain maps
jn,m

p ∶ Gn → Gm are unbounded. Then 5.10 will yield new K-divergence results in 5.16 below.
We recall first the needed content from [27]. We start with a “rectangular” triangulation T
of the torus S1 × S1 with r × s vertices, where r ≥ s ≥ 4. This is our graph T = G0, and the
other graphs Gn will be isomorphic to its iterated clique graphs. The conditions on r and s
ensure that the only triangles of the graph T (whose order is r ⋅ s) are those seen in Figure 3
below, and in fact the open neighborhood of every vertex of G0 = T induces an hexagon C6.

Figure 3. The graph T when r = 6 and s = 4. Identify opposite borders in order
to form a torus. In this example T has 24 vertices, 72 edges and 48 triangles.

For A,B ⊆ Zr ⊕ Zs put A +B = {a + b ∣ a ∈ A, b ∈ B}, −A = {−a ∣ a ∈ A} and, for x ∈ Zr ⊕ Zs,
we also define x + A = {x + a ∣ a ∈ A}. Let us specify the following subsets of Zr ⊕ Zs:
T = {(0,0), (1,0), (0,1)}, P = {(1,1)}, E0 = T − T , E1 = T + T , E2 = P + T , E3 = P + P ,
Ek = ∅ for k > 3 and Ek = −E−k for all k < 0. Finally, for n ≥ 0 and r ≥ s ≥ 4, the graph Gn

has vertex set {xn
i ∣ x ∈ Zr⊕Zs ,0 ≤ i ≤ n} and an adjacency xn

i ∼ yn
j if and only if y−x ∈ Ej−i.

If A ⊆ Zr ⊕Zs and i ∈ Z put An
i = {an

i ∣ a ∈ A}∩V (Gn). Note that An
i = ∅ when i < 0 or i > n.

The layers of Gn are its subgraphs T n
0 ,T n

1 , . . . ,T n
n P Gn, where T n

i = ⟨(Zr ⊕Zs)ni ⟩.
Each layer is isomorphic to the above triangulation T of the torus, and Gn is the disjoint
union of the n+1 layers plus some additional edges between layers described by the sets Ek.
Call homogeneous any vertex set (or subgraph) contained in a layer. The closed neighborhood
of each vertex xn

i ∈ Gn is the union of the non-empty homogeneous sets of the form (x+Ek)ni+k

with −3 ≤ k ≤ 3. Of these, at least (x+E0)ni is always present for any n, i and x. See Figure 4.

(x +E−3)
n
i−3 (x +E−2)

n
i−2 (x +E−1)

n
i−1 (x +E0)

n
i (x +E1)

n
i+1 (x +E2)

n
i+2 (x +E3)

n
i+3

Figure 4. A vertex xn
i ∈ Gn (black dot) and its neighbors. Only the relevant parts

of the layers are depicted. N[xn
i ] ⊆ T

n
i−3∪T

n
i−2∪⋅ ⋅ ⋅∪T

n
i+3 ,but T n

j = ∅ if j ∉ {0, 1, . . . n}.

The cliques of Gn are Qn
i,x = (x−P )ni−2 ∪ (x−T )ni−1 ∪ (x+T )ni ∪ (x+P )ni+1 for x ∈ Zr ⊕Zs and

0 ≤ i ≤ n+ 1, see Figure 5. Each clique q of Gn contains one or two non-empty homogeneous
triangles, and q is determined by any such triangle: If q ⊇ (x + T )ni ≠ ∅ then 0 ≤ i ≤ n and
q = Qn

i,x , and if q ⊇ (x − T )ni−1 ≠ ∅ then 1 ≤ i ≤ n + 1 and again q = Qn
i,x (see 3.1-3.2 in [27]).

(x − P )ni−2 (x − T )ni−1 (x + T )ni (x + P )ni+1

Figure 5. The clique Qn
i,x of Gn is contained in Ti−2 ∪ Ti−1 ∪ Ti ∪ Ti+1 .

It was shown in [27] that φn ∶K(Gn)→ Gn+1, given by φn(Qn
i,x) = xn+1

i , is an isomorphism.
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Lemma 5.12. If N[v] ⊇ (x +E0)ni for some v ∈ Gn, then v = xn
i .

Proof. Any zn
j ∈ Gn has, including itself, seven neighbors in its layer T n

j and at most six in
the others, so v ∈ T n

i and in fact v ∈ N[xn
i ] ∩ T n

i = (x +E0)ni . If v ≠ xn
i , then v ∈ N(xn

i ) ∩ T n
i .

But then ⟨N(xn
i ) ∩ T n

i ⟩ is not an hexagon, but a cone with apex v: a contradiction. ◻
Corollary 5.13. The graph Gn is stiff for any n ≥ 0. ◻

For n ≤m and 0 ≤ p ≤m−n define j = jn,m
p ∶ Gn → Gm by jn,m

p (xn
i ) = xm

i+p. Then j ∶ Gn → Gm

is an embedding. It identifies each layer T n
i of Gn with the layer T m

i+p of Gm, and its image
is j(Gn) = ⟨T m

p ∪ T m
1+p ∪ ⋅ ⋅ ⋅ ∪ T m

n+p⟩ P Gm. When it is safe we will write just j instead of jn,m
p .

We do not need it here, but let us just mention that the particular case jn,n+2
1 ∶ Gn → Gn+2 is

in essence the star map C ∶ Gn → K2(Gn) of §5.2. Indeed, using the iso ψ ∶ K2(Gn) → Gn+2

given by ψ = φn+1 ○K(φn) one can show that C ○ ψ = jn,n+2
1 .

If A = (x ± T )nj is a homogeneous triangle of Gn, then Â = j(T ) is the homogeneous triangle
Â = j(T ) = (x ± T )mj+p of Gm. If A ⊆ q ∈ K(Gn) and q̂ = K(j)(q) ∈ K(Gm), then Â ⊆ q̂.
It follows that if q = Qn

i,x then q̂ = Qm
i+p,x, so the left side diagram below commutes in G,

hence in hG. Then the right side diagram below also commutes in hG for all t ≥ 1 because
Kt−1 ∶ hG → hG is a functor by 5.1.

K(Gn) K(Gm)

Gn+1 Gm+1

φn

K(jn,m
p )

jn+1,m+1
p

φ−1
m

Kt(Gn) Kt(Gm)

Kt−1(Gn+1) Kt−1(Gm+1).
Kt−1

(φn)

Kt
(jn,m

p )

Kt−1
(jn+1,m+1

p )

Kt−1
(φ−1

m )

The isomorphisms φn and φ−1
m are equivalences, so Kt−1(φn) and Kt−1(φ−1

m ) are equivalences
for all t ≥ 1. Then the horizontal morphisms in each diagram have the same norm by 5.9.
By induction on t, we get that ∣∣Kt(jn,m

p )∣∣ = ∣∣jn+t,m+t
p ∣∣. Indeed, for t = 1, see the diagram on

the left. For t > 1, using the diagram on the right and the induction hypothesis we obtain
that ∣∣Kt(jn,m

p )∣∣ = ∣∣Kt−1(jn+1,m+1
p )∣∣ = ∣∣jn+1+t−1,m+1+t−1

p ∣∣ = ∣∣jn+t,m+t
p ∣∣.

Lemma 5.14. For any n ≤m and 0 ≤ p ≤m − n, the norm of j = jn,m
p is ∣∣j∣∣ = (n + 1) ⋅ r ⋅ s.

Proof. Since j = jn,m
p ∶ Gn → Gm is an embedding, ∣Im(j)∣ = ∣Gn∣ = (n + 1) ⋅ r ⋅ s. Hence

it is enough to show that j is homotopic only to itself or, by 3.11, that j ∼e f ⇒ f = j.
We have f(x) = j(x) away from some xn

i ∈ Gn, and f(xn
i ) ∼ j(xn

i ), so j(xn
i ) ∈ N[f(xn

i )].
By 2.2.5, N[f(xn

i )] ⊇ f(N[xn
i ]) = j(N(xn

i ))∪{f(xn
i )}, so N[f(xn

i )] ⊇ j(N(xn
i )) and we have

that N[f(xn
i )] ⊇ j(N(xn

i ))∪ {j(xn
i )} = j(N[xn

i ]). As N[f(xn
i )] ⊇ j((x+E0)ni ) = (x+E0)mi+p ,

we get that f(xn
i ) = xm

i+p = j(xn
i ) by 5.12, so f = j and j is indeed homotopic only to j. ◻

Theorem 5.15. If n ≤m and 0 ≤ p ≤m − n, the embedding jn,m
p ∶ Gn ↪ Gm is unbounded.

Proof. Applying 5.14 for n + t and m + t instead of n and m, from what we already know
we get that ∣∣Kt(jn,m

p )∣∣ = ∣∣jn+t,m+t
p ∣∣ = (n + t) ⋅ r ⋅ s, which is unbounded as t grows. ◻

Theorem 5.16. Let X ⩽ Gn contain some layer T n
p ⩽ Gn. Then X is K-divergent in hG.

Proof. Note that j = j0,n
p ∶ G0 → Gn is unbounded by 5.15 and its image is j(G0) = T n

p ⩽ Gn.
Since j decomposes as G0 → T n

p ↪X ↪ Gn where the first map is j∣ ∶ G0 → T n
p , the inclusion

map X ↪ Gn is unbounded by 5.8. Therefore X is K-divergent in hG by 5.10. ◻
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6. K-Divergence vs hK-Divergence

6.1. Hash arrows and the operators K and KC. We start with two known results:

Theorem 6.1. [47, Prop.3]. If (r, s) is a retraction-section pair in G, then any chosen
selections of K(r) and K(s) form also a retraction-section pair (K(r),K(s)). ◻
Theorem 6.2. [17, Thm.3]. If X #Ð→ Y , then K(X) #Ð→K(Y ). ◻

The graph of completes of a graph X is the intersection graph C(X) of all its complete
subgraphs: V (C(X)) = {u ⊆ V (X) ∣ u is complete in X} and E(C(X)) = {uv ∣ u ∩ v ≠ ∅}.
Note that K(X) P C(X). If u, v ∈ C(X) and u ⊇ v, then u ≽ v. As any complete is contained
in some clique, K(X) is a dominant subgraph of C(X) and C(X) #Ð→ K(X) by 2.11.
The complete graph functor C ∶ G → G is given by C(f)(u) = f(u) for f ∈ G(X,Y ), u ∈ C(X).
Note that C(f) ∶ C(X) → C(Y ) is a map because u ∩ u′ ≠ ∅ ⇒ f(u) ∩ f(u′) ≠ ∅. Also,
C(g ○ f)(u) = g(f(u)) = (C(g) ○C(f))(u), so C(g ○ f) = C(g) ○C(f). Finally, since clearly
C(1X) = 1C(X), we get that C ∶ G → G is indeed a functor. We will combine this functor C
with the clique operator K to obtain the operator KC =K ○C of the graph category G.

Lemma 6.3. If a, b ∈ A, q ∈K(A), a ≽ b, and b ∈ q, then a ∈ q. (a ≽ b ∈ q ∈K(A)⇒ a ∈ q).
Proof. b ∈ q implies q ⊆ N[b] ⊆ N[a], so q ∪ {a} is complete and a ∈ q as q is maximal. ◻

In general X #Ð→ Y does not imply C(X) #Ð→ C(Y ), so 6.2 does not hold for C. Nevertheless:

Theorem 6.4. If X #Ð→ Y , then KC(X) #Ð→KC(Y ).
Proof. We have a dominant retraction r ∶X → Y , so for some map s ∶ Y →X we have that
r ○ s = 1Y and the idempotent s ○ r ∶ X → X is a domination. We shall show the existence
of r̂ ∶KC(X)→KC(Y ) and ŝ ∶KC(Y )→KC(X) with the same corresponding properties.
Since C is a functor and (r, s) is a retraction-section pair, so is (C(r),C(s)). Now we fix
maps r̂ =KC(r) and ŝ =KC(s). By 6.1 we know that (r̂, ŝ) is also a retraction-section pair.

We will prove that the idempotent ŝ ○ r̂ ∶ KC(X) → KC(Y ) is a domination, and therefore
r̂ ∶KC(X)→KC(Y ) will be a dominant retraction, thus ending the proof. Let Q ∈KC(X).
We need ŝ(r̂(Q)) ≽ Q so, if Q′ ∼ Q, we need that Q′ ∼ ŝ(r̂(Q)). Take a complete u ∈ C(X)
with u ∈ Q ∩Q′, and a clique q ∈K(X) with q ⊇ u, so q ≽ u in C(X).
Four uses of 6.3 will yield q ∈ Q′ ∩ ŝ(r̂(Q)), so Q′ ∼ ŝ(r̂(Q)). First of all, q ≽ u ∈ Q′ ∈KC(X)
implies q ∈ Q′, so now we only need that q ∈ ŝ(r̂(Q)). For any x ∈ q, s(r(x)) ≽ x ∈ q ∈K(X)
implies s(r(x)) ∈ q, so s(r(q)) ⊆ q and then we have q ≽ s(r(q)) in C(X); on the other
hand q ≽ u ∈ Q ∈ KC(X) implies q ∈ Q, and thus s(r(q)) ∈ s(r(Q)) ⊆ s(r̂(Q)) ⊆ ŝ(r̂(Q)).
Then q ≽ s(r(q)) ∈ ŝ(r̂(Q)) ∈KC(X) implies q ∈ ŝ(r̂(Q)), as we needed to show. ◻

Theorem 6.5. [17, Thm.4]. If X #Ð→ Y then KC(Y ) #Ð→K2(X). ◻
Theorem 6.6. If X #tÐ→ Y , then (KC)t(Y ) #tÐ→K2t(X).
Proof. The base case t = 1 is just 6.5. Assuming that X #t+1ÐÐ→ Y , we have X #1Ð→ Z

#tÐ→ Y

for some Z. Applying t times 6.4 to Z #tÐ→ Y we get KC(Z) #tÐ→KC(Y ) so, by the inductive
hypothesis, (KC)t+1(Y ) = (KC)tKC(Y ) #tÐ→K2tKC(Z). On the other hand, from X

#1Ð→ Z

we obtain KC(Z) #1Ð→ K2(X) by the base case and applying 6.2 to this 2t times we get
K2tKC(Z) #1Ð→K2t(K2(X)) =K2(t+1)(X). Therefore, (KC)t+1(Y ) #t+1ÐÐ→K2(t+1)(X). ◻
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6.2. h-self-cliqueness and piK-divergence. In G a graph A is self-clique if K(A) ≅ A.
This particular case of K-convergence appeared in [14] and has been much studied, see [32].

In [33], using the topology of the flag complex, A was called homotopy K-invariant if ∣∆(A)∣
and ∣∆(K(A))∣ have the same homotopy type, and A was called homotopy K-permanent if
∣∆(A)∣ ≃ ∣∆(Kn(A))∣ for all n ≥ 0. The distinction was necessary because there are homotopy
K-invariant graphs which are not homotopy K-permanent, see Proposition 3.2 of [33].

For our (flagless) graph homotopy the situation is better. We call A homotopy self-clique, or
h-self-clique if A is self-clique in hG, i.e. if K(A) ≅ A in hG. In other words, A is h-self-clique
if K(A) ≃ A in G, i.e. if A is self-clique up to homotopy. This new hK-invariance is always
“permanent,” somehow like the derivability of complex functions as opposed to real ones:

Lemma 6.7. If A ≃K(A), then A ≃Kn(A) for all n ≥ 0.
Proof. Just apply 5.2 iteratively: A ≃K(A) ≃K2(A) ≃K3(A) ≃ ⋯ ≃Kn(A) ≃ ⋯ ◻
Another kind ofK-convergence that has been considered in G is the following: A isK-periodic
of period p if Kp(A) ≅ A and p ≥ 1 is minimal. For period p = 1 this reduces to self-cliqueness.
As recalled in §5.3, any K-convergent graph A is eventually K-periodic: Kn(A) is K-periodic
for some n ≥ 0. Examples of K-periodic graphs of any period were given already in [14].
The adaptation to hG is immediate: A is hK-periodic of period p if Kp(X) ≅ X in hG
(or, equivalently, Kp(X) ≃X in G), where p ≥ 1 is minimal.

Lemma 6.8 ([47], [26]). K(X × Y ) ≅K(X) ×K(Y ) for all X,Y ∈ G. ◻

Lemma 6.9. Let A be hK-periodic of period p and take the product Y of the K-orbit of A,
i.e. Y = A ×K(A) ×K2(A) × . . . ×Kp−1(A). Then Y is hK-invariant.
Proof. Let us calculate in G. Since we have that Kp(A) ≃ A, then also Kp(A)×B ≃ A×B
for any graph B: Indeed, if f ∶Kp(A)→ A and g ∶ A→Kp(A) are homotopy inverse to each
other, then so are f × 1B ∶Kp(A) ×B → A ×B and g × 1B ∶ A ×B →Kp(A) ×B. Let us now
define B = K(A) ×K2(A) × . . . ×Kp−1(A), so Y = A ×B. Then, by 6.8 and symmetry of ×,
K(Y ) ≅K(A) ×K(B) ≅K(A) ×K2(A) × . . . ×Kp−1(A) ×Kp(A) = B ×Kp(A) ≅Kp(A) ×B.
But then K(Y ) ≅Kp(A) ×B ≃ A ×B = Y in G, which means that K(Y ) ≅ Y in hG. ◻
The graph Y is piK-divergent if pi(Kn(Y )) → ∞ as n → ∞. Not only ∣Kn(Y )∣ → ∞, but
even the minimal length l(n) of a chain of subgraphs Kn(Y ) ⩾X1 ⩾X2 ⩾ . . . ⩾Xl(n), each of
them dominant in the previous one and ending in a stiff Xl(n) tends to infinity with n.

Theorem 6.10. Let Z be stiff, K-divergent, and hK-invariant. Then Z is piK-divergent.

Proof. Since Z is stiff, P∞(Z) = Z by 2.17. Since Z is hK-invariant, by 6.7 Kn(Z) ≃ Z
for all n, so P∞(KnZ) ≅ P∞(Z) = Z by 4.16 and then we have Kn(Z)

#t(n)ÐÐÐ→ Z for each
n ≥ 0, where t(n) = pi(Kn(Z)). By way of contradiction, assume t(n) /Ð→ ∞ as n → ∞.
Then there exists an infinite sequence 0 ≤ n0 < n1 < n2 < . . . such that the set {t(ni) ∣ i ∈ N}
is bounded. Put m = max{t(ni) ∣ i ∈ N}, so by 2.18 we have Kni(Y ) #mÐÐ→ Y for each i ∈ N.
By 6.6 we have (KC)m(Y ) #mÐÐ→K2m+ni(Y ) for all i ∈ N. Since (KC)m(Y ) is finite it only has
a finite number of dismantlings up to isomorphism, so we must have K2m+ni(Y ) ≅K2m+nj(Y )
for some i < j, and hence Y is K-convergent in G, a contradiction. ◻
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Theorem 6.11. There is a graph X which is K-divergent in G but K-convergent in hG if
and only in there is a stiff graph Z which is hK-invariant and piK-divergent.
Proof. Let X be K-divergent and suppose that Kn(X) ≃ Km(X) for some m > n ≥ 0,
where p = m − n is minimal. Let A = Kn(X), which is hK-periodic of period p. Since all
Kt(X) are K-divergent, so are A and all Kt(A). Let Y = A×K(A)×K2(A)× . . .×Kp−1(A).
Then Y is K-divergent by 6.8, and it is hK-invariant by 6.9. Now take Z = P∞(Y ), which
is a stiff graph by 2.21. Since Y dismantles to Z, we have that Z ≃ Y by 4.13. Then Z is
K-divergent by 5.6, and K(Z) ≃K(Y ) by 5.2. Since K(Y ) ≃ Y we arrive at K(Z) ≃ Y ≃ Z,
so Z is hK-invariant. Now 6.10 ensures that Z is piK-divergent. The converse is obvious. ◻

Problem 1. Is there a K-divergent graph which is hK-convergent?
By 6.11 there would be more than meets the eye to an affirmative answer to Problem 1.

Appendix A. Self-maps of finite sets

In this appendix X is a finite set and f ∶ X → X a function, or a self-map of X. For ease
of reference we record here some trivial statements about self-maps. The digraph of f with
vertex set X and arc set {(x, f(x)) ∣ x ∈X} helps to visualize what follows (see Figure 6).

As X = f 0(X) ⊇ f(X) ⊇ f 2(X) ⊇⋯ there must be a minimal k ≥ 0 with fk(X) = fk+1(X).
We call fk(X) the stable image of f , and k the stability index of f , denoted by s(f) = k.

Denote the stable image of f by X0 = fk(X). Note that f ∣∣ ∶ X0 → X0 is bijective as
f(X0) = X0. Define fb ∶ X → X by fb(x) = f(x) for x ∈ X0 and fb(x) = x for x ∉ X0. Thus
fb is bijective, acts like f over X0, and fixes each element of X ∖X0. We call fb the bijective
part of f . Note that f is bijective ⇔ k = 0 ⇔ f = fb. Note also that s(fb) = 0 and that the
digraph of fb is obtained from that of f by replacing each arc in X ∖X0 by a loop.

Define now fa ∶ X → X by fa(x) = f(x) if x ∉ X0 and fa(x) = x if x ∈ X0. This fa is acyclic
(see below), acts like f over X ∖X0, and fixes each element of X0. We call fa the acyclic part
of f . Notice that s(fa) = s(f) and that the digraph of fa is that of f with each arc in X0
replaced by a loop. Clearly f is the product of its acyclic and bijective parts: f = fa ○ fb.

If k > 0, let X1 = f−1(X0) ∖X0 and, if k > 1, define recursively Xj = f−1(Xj−1) for j > 1.
Then {X0,X1, . . . ,Xk} is a partition of X, and {X1,X2, . . . ,Xk} is a partition of X ∖X0.
If i ∈ {1, . . . , k}, note that f(Xi) ⊆ Xi−1 and define ei ∶ X → X by by ei(x) = f(x) for x ∈ Xi

and ei(x) = x for x ∉Xi. Thus ei only moves the vertices of Xi and sends them into Xi−1, so
ei is idempotent (e2

i = ei), acts like f over Xi, and fixes X ∖Xi pointwise. Notice that the
acyclic part of f is the product of the idempotents ei : we have that fa = ek ○ ⋅ ⋅ ⋅ ○ e2 ○ e1.

A function f ∶X →X is said to be acyclic if its only cycles are trivial: m > 0 and fm(x) = x
imply f(x) = x. Any idempotent e ∶ X → X is acyclic, since m > 0 and em(x) = x imply
e(x) = em(x) = x. Since fa = ek ○ ⋅ ⋅ ⋅ ○ e2 ○ e1 and ei(Xi) ⊆Xi−1 for i = 1, . . . , k, fa is acyclic.

Both the bijective part fb and the idempotents ei can be factorized further. One knows
that fb is a product of cyclic permutations which are, in turn, products of transpositions
ti = (ai, bi) ∶ X → X. In fact, each ti can be taken to be of the form ti = (ai, f(ai)) using
cycle decompositions of the type (a, b, c, d) = (a, b)(b, c)(c, d). The cycles of fb are precisely
the cycles of f , so we have that f is acyclic ⇔ fb = 1X ⇔ f = fa. It is easily seen that we
also have that f is bijective ⇔ k = 0⇔ f = fb⇔ fa = 1X .
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To decompose further the acyclic part fa of f we factorize the idempotents ei into pinches.
The pinch of a to b is the function p = [a, b] ∶ X → X given by p(a) = b and p(x) = x for all
x ∈ X ∖ {a}. In the trivial case a = b, (a, b) = [a, b] = 1X . If a ≠ b the transposition t = (a, b)
is bijective but the pinch p = [a, b] is not bijective, as p(X) = X ∖ {a}. Each idempotent ei

will turn out to be be a product of pinches that commute with each other.

Lemma A.1. The non-trivial and different pinches p = [a, b] and q = [x, y] commute with
each other if and only if b ≠ x ≠ a ≠ y. In other words, p ○ q = q ○ p if and only if p and q are
either disjoint (i.e. ∣{a, b, x, y}∣ = 4) or convergent (i.e. ∣{a, b, x, y}∣ = 3 and b = y). ◻

Lemma A.2. If f ∶ X → X is idempotent, f = ∏x∈X∖f(X)[x, f(x)] is a decomposition of f
as a well-defined product of mutually commuting pinches. Conversely, any product e = ∏ ei

of mutually commuting idempotent self-maps ei ∶X →X is idempotent.
Proof. If f ≠ 1X , s(f) = 1, the partition of f is given by X0 = f(X), X1 =X ∖f(X), and f
sends X1 to X0 and fixes X0. The pinches [x, f(x)] with x ∈ X1 commute with each other
by A.1 and then we clearly have f =∏x∈X1[x, f(x)]. For the converse, by the commutativity
hypothesis, e2 = (∏ ei)2 =∏ e2

i =∏ ei = e, and thus e is idempotent. ◻

Lemma A.3. Let f ∶X →X be acyclic, k = s(f), Y = f(X) and g = f ∣∣ ∶ Y → Y . Then:
(1) k ≤ 1⇔ f is idempotent. Also k = 0⇔ f = 1X .

Now assume that k > 0 for items (2) and (3):
(2) The partition of g is {Yi =Xi ∩ Y ∣ 0 ≤ i < k}. Thus g is acyclic with s(g) = k − 1.

(3) 1 ≤ j ≤ k⇒ s(f j) = ⌈k
j ⌉. Therefore s(fk) = 1 when k ≥ 1. ◻

We close this Appendix with an example of a concrete self-map f ∶X →X:
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Figure 6. The digraph, the idempotents ei ∶ X → X, and the partition {Xi}
k
i=0

of the set X = {1, 2, . . . , 19} for a self-map f of X with stability index k = s(f) = 3.

For the example in Figure 6 the decompositions are as follows: First, f = fa ○ fb (acyclic
and bijective parts). Then, fb = (14,15)(15,16)(17,18) (product of transpositions) and
fa = e3○e2○e1 (product of idempotents). Finally, the idempotents are e3 = [4,9][6,11][7,11],
e2 = [1,8][3,12][9,12][5,10][11,13], and e1 = [8,14][2,14][12,17][10,18][13,19] (products
of mutually commuting pinches). ◻
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