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On cliques and bicliques
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Abstract

Basic definitions are given in the next paragraph. We studied second clique graphs
of suspensions of graphs, K2(S(G)), and characterize them, in terms of an auxiliary
biclique operator B which transforms a graph G into its biclique graph B(G). The
characterization is then: K2(S(G)) ∼= B(K(G)). We found a characterization of the
graphs, G, that maximize |B(G)| for any given order n = |G|. This particular version
of biclique operator is new in the literature. The main motivation to study B(G) is
an attempt to characterize the graphs G that maximize |K2(G)|, thus mimicking a
result of Moon and Moser [12] that characterizes the graphs maximizing |K(G)|.
The clique graph K(G) of a a graph G is the intersection graph of the set of all

(maximal) cliques of G (and K2(G) = K(K(G)) ). The suspension S(G) of a graph
G is the graph obtained from G by adding two new vertices which are adjacent to
all other vertices, but not to each other. Here, a biclique (X,Y ) is an ordered pair
of not necessarily disjoint subsets of vertices of G such that each x ∈ X is adjacent
or equal to every y ∈ Y and such that (X,Y ) is maximal under component-wise
inclusion. Finally B(G) is the graph whose vertices are the bicliques of G with
adjacencies given by (X,Y ) ' (X ′, Y ′) if and only if X ∩X ′ 6= ∅ or Y ∩ Y ′ 6= ∅.
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All our graphs are finite and simple. We usually identify induced subgraphs
with their vertex set and in particular, we shall write x ∈ G, instead of
x ∈ V (G). As usual in clique graph theory, a clique of a graph is a maximal
complete subgraph. The clique graph K(G) of a graph G, is the intersection
graph of the set of all cliques of G. Clearly, the clique operator K can be
iterated: Kn+1(G) = K(Kn(G)). Clique graphs and iterated clique graphs
have been studied extensively [11, 15, 19] and have found applications to the
study of the Fixed Point Property of partially ordered sets [9] and to Loop
Quantum Gravity [16–18].

When two vertices x, y ∈ G are adjacent-or-equal we write x ' y. Let
us denote by Kn, Pn, Cn and In the complete graph, the path graph, the
cycle graph and the edgeless graph on n vertices (respectively). We also use
standard notation for the join of two graphs, H + G (also known as Zykov
sum) and for isomorphic graphs, G ∼= H.

Given G, let B = {(X, Y ) ∈ 2G×2G | x ' y, for every x ∈ X and y ∈ Y }.
Define a partial order on B by (X1, Y1) 4 (X2, Y2) ⇔ X1 ⊆ X2 and Y1 ⊆ Y2.
A biclique (X, Y ) of G is a maximal element of B under 4. The biclique
graph B(G) of G is the graph whose vertices are the bicliques of G and two
vertices (X1, Y1), (X2, Y2) ∈ B(G) are adjacent if and only if X1 ∩ X2 6= ∅
or Y1 ∩ Y2 6= ∅. Observe that |B(Kn)| = 1, |B(In)| = n + 2 (for n ≥ 2),
|B(P3)| = 4, |B(Pn)| = 3n − 3 (for n ≥ 4), |B(C3)| = 1, |B(C4)| = 16
and |B(Cn)| = 3n + 2 (for n ≥ 5). Several variations of a biclique operator
have been studied in the literature by Prisner [15], Zelinka [20], Figueroa and
Llano [2], and by Groshaus et al [4–8]. The variation studied here is new as
far as we know.

Our main motivation comes from Moon and Moser [12] who characterized
the graphs G that maximize the number of cliques |K(G)|: for any given order
n = |G| ≥ 2, G = H + I3 + I3 + · · ·+ I3 where H ∈ {I2, I3, I2 + I2, I4} is taken
such that |H| = |G| − 3bn−2

3
c. One would expect that these Moon-Moser

graphs grow as fast as possible under iterated clique operators (i.e. that those
G maximize |Kn(G)| for all n), but experiments with small graphs show that
that is not the case. The experiments (we used GAP and YAGS [1, 3]) show
that, for n ∈ {2, 3, · · · , 9}, |K2(G)| is maximized by G = H+I2+I2+ · · ·+I2,
where H ∈ {I2, I3} (although when n ∈ {4, 5}, there are a few other graphs
that also attain the maximum |K2(G)|). The experiments also suggest that
|K2(G)| is bigger when G is a suspension than when it is not. Here, we say
that G is the suspension of G0 when G ∼= S(G0) := G0 + I2. In this work we
start the study of graphs maximizing |K2(G)|, by studying first the case when
G = S(G0).



A few extra standard notations used here are: NG(x), N(x), NG[x], N [x]
for open and closed neighborhoods of the vertex x (in the graph G); G−x for
vertex removal; G for the complement graph and G×H for tensor product of
graphs. We define the d-dimensional octahedral graph by Od = I2+I2+· · ·+I2
(d times) and the circle product by G ◦ H = G×H. Note that in G ◦ H,
(g1, h1) ' (g2, h2) if and only if g1 ' g2 in G or h1 ' h2 in H.

The following theorem characterizes K2(S(G)) in terms of the biclique
operator B.

Theorem 1 K2(S(G)) ∼= B(K(G)).

Proof. From the definition of S(G), there are vertices x, y ∈ S(G)\G, x 6' y,
such that N(x) = N(y) = G. Note that if p ∈ K(S(G)), then p\{x} ∈ K(G)
or p\{y} ∈ K(G). Similarly, if q ∈ K(G) then q ∪ {x}, q ∪ {y} ∈ K(S(G)).
Define τ : B(K(G))→ K2(S(G)) by

τ((X, Y )) =

(⋃
q∈X

{q ∪ {x}}

)
∪

(⋃
q∈Y

{q ∪ {y}}

)
.

We claim that τ is an isomorphism of graphs. Let P = (
⋃r

i=1{qi ∪ {x}})∪
(
⋃s

i=1{q′i ∪ {y}}) be a clique of K(S(G)), then W = (∪ri=1qi,∪s
i=1q

′
i) is a bi-

clique of K(G), it follows that τ(W ) = P , thus τ is surjective.
Let W1 = (X1, Y1) and W2 = (X2, Y2) be bicliques of K(G), if τ(W1) =

τ(W2) then for A1 =
⋃

q∈X1
{q ∪ {x}} and A2 =

⋃
q∈X2
{q ∪ {x}} we have

that A1 = A2, hence X1 = X2. A similar argument shows that Y1 = Y2,
consequently W1 = W2 and τ is injective. Finally, the bicliques W1 and
W2 are adjacent in B(K(G)) if and only if there is a clique q ∈ K(G) such
that q ∈ (X1 ∩X2) ∪ (Y1 ∩ Y2), since the last statement is true if and only if
q ∪ {x} ∈ τ(W1) ∩ τ(W2) or q ∪ {y} ∈ τ(W1) ∩ τ(W2) (i.e. when τ(W1) and
τ(W2) are adjacent in K2(S(G))), we conclude that τ preserves adjacency. 2

Note that B(G) ∼= S(H) for some H if and only if (∅, G) and (G,∅) are
bicliques of G and that this happens exactly when G is not a cone (i.e. G has
no universal vertices). It follows from Theorem 1 that K2(S(G)) is again a
suspension exactly when G is not K-cone (i.e. when K(G) is not a cone).

It is well known that the clique graph of a Zykov sum is a circle product,
K(G+H) ∼= K(G)◦K(H) [10,13,14]. Surprisingly, the biclique operator also
shares this property:

Theorem 2 For any graphs G and H, we have: B(G+H) ∼= B(G) ◦B(H).

Proof. Define φ : B(G + H) → B(G) ◦ B(H) by φ((G1 ∪ H1, G2 ∪ H2)) =



((G1, G2), (H1, H2)), where G1 and G2 are subsets of V (G) and H1 and H2 are
subsets of V (H). We proceed to show that φ is an isomorphism of graphs.

If T = ((G1, G2), (H1, H2)) ∈ B(G)◦B(H) thenW = (G1∪H1, G2∪H2) is
a biclique of G+H, hence φ(W ) = T and φ is surjective. It is straightforward
to verify that φ is injective. Now, the bicliques W1 = (G1 ∪ H1, G

′
1 ∪ H ′1)

and W2 = (G2 ∪ H2, G
′
2 ∪ H ′2) of G + H are adjacent-or-equal in B(G + H)

if and only if (G1 ∪ H1) ∩ (G2 ∪ H2) 6= ∅ or (G′1 ∪ H ′1) ∩ (G′2 ∪ H ′2) 6= ∅,
but this last statement is true if and only if (G1, G

′
1) ' (G2, G

′
2) in B(G) or

(H1, H
′
1) ' (H2, H

′
2) in B(H), therefore φ(W1) ' φ(W2) in B(G) ◦B(H) (i.e.

φ preserves adjacency). 2

Given a graph G and a subset X ⊆ G, define N [X] =
⋂

x∈X NG[x] (with
N [∅] = V (G)), and define β : 2G → B(G) by β(X) = (N [N [X]], N [X]).
Observe that β is surjective, and in particular, |B(G)| ≤ 2|G|. The equality
holds exactly when G is an octahedral graph:

Theorem 3 The following statements are equivalent:

1. β is injective.
2. N [X] 6= N [X ′] for all X,X ′ ⊆ G with X 6= X ′.
3. N [G− x] 6= N [G] for all x ∈ G.
4. For all x ∈ G, there is some y ∈ G such that

x 6' y and y ' z for all z ∈ G− x.
5. n = |G| is even and G ∼= Od for d = n

2
.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4) are straight forward. For (4)
⇒ (5), observe that x is the only vertex of G satisfying y 6' x and hence we
must have x ' z for all z ∈ G − y. It follows that G ∼= I2 + I2 + · · · + I2 (d
times). Finally, for (5) ⇒ (1), consider two different X1, X2 ⊆ Od. Assume,
without loss of generality, that X1\X2 6= ∅, then there is a vertex z ∈ X1\X2

and a vertex w ∈ Od with w 6' z. Note that N [w] = G− z, hence w ∈ N [X2]
and w 6∈ N [X1]. Therefore N [X1] 6= N [X2]. 2

By the previous theorem, in the even order case, |G| = n = 2d, the max-
imum value of |B(G)| is 2n and it is achieved exactly when G ∼= Od. In the
odd order case, a good lower bound for the maximum value of |B(G)|, comes
from the graph G = I3 +Od:

Lemma 4 Let n = 2d+ 3 = |I3 +Od|, then |B(I3 +Od)| = 5
8
· 2n

Proof. By Theorem 2, B(I3 + Od) ∼= B(I3) ◦ B(Od), hence |B(I3 + Od)| =
|B(I3) ◦B(Od)| = |B(I3)| · |B(Od)| = 5 · 22d = 5

8
· 2n. 2



A full characterization of graphs G maximizing |B(G)| requires more work
and lies beyond the scope of this extended abstract, but it can be proved that
the graphs maximizing |B(G)| are precisely those considered so far:

Theorem 5 Let G be a graph of order n > 1, maximizing |B(G)|. Then, if
n = 2d, we have that G ∼= Od; otherwise, n = 2d+ 3 and G ∼= I3 +Od.

It is known that the clique graph of an octahedral graph is again an oc-
tahedral graph (indeed: K(Od) ∼= O2d−1 , see [13]) and we proved here that
octahedral graphs maximize |B(G)|. Since K2(S(G)) ∼= B(K(G)), it fol-
lows that K2(Od) = K2(S(Od−1)) ∼= B(K(Od−1)) ∼= B(O2d−2). This results,
together with the experimental evidence mentioned before, suggest that the
graphs maximizing |K2(G)| are the same as those maximizing |B(G)|, which
are described in Theorem 5 (save for the few exceptions mentioned earlier
when n ∈ {4, 5}). Certainly, if G has even order and maximizes |K2(G)|, we
have the following bound:

|K2(G)| ≥ |K2(Od)| = |B(O2d−2)| = 22
d−1

=
√
2
√
2
n

.
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