On cliques and bicliques

M.A. Pizaña ^{1,2} I.A. Robles ³

Universidad Autónoma Metropolitana - Iztapalapa Mexico City, 09340, Mexico

Abstract

Basic definitions are given in the next paragraph. We studied second clique graphs of suspensions of graphs, $K^2(S(G))$, and characterize them, in terms of an auxiliary biclique operator B which transforms a graph G into its biclique graph B(G). The characterization is then: $K^2(S(G)) \cong B(K(G))$. We found a characterization of the graphs, G, that maximize |B(G)| for any given order n = |G|. This particular version of biclique operator is new in the literature. The main motivation to study B(G) is an attempt to characterize the graphs G that maximize $|K^2(G)|$, thus mimicking a result of Moon and Moser [12] that characterizes the graphs maximizing |K(G)|.

The clique graph K(G) of a graph G is the intersection graph of the set of all (maximal) cliques of G (and $K^2(G) = K(K(G))$). The suspension S(G) of a graph G is the graph obtained from G by adding two new vertices which are adjacent to all other vertices, but not to each other. Here, a biclique (X, Y) is an ordered pair of not necessarily disjoint subsets of vertices of G such that each $x \in X$ is adjacent or equal to every $y \in Y$ and such that (X, Y) is maximal under component-wise inclusion. Finally B(G) is the graph whose vertices are the bicliques of G with adjacencies given by $(X, Y) \simeq (X', Y')$ if and only if $X \cap X' \neq \emptyset$ or $Y \cap Y' \neq \emptyset$.

Keywords: graph theory, graph dynamics, clique graphs, bicliques.

¹ Partially supported by SEP-CONACyT, grant 285362.

² Email:map@xanum.uam.mx

³ Email:ismael_ariel@hotmail.com

All our graphs are finite and simple. We usually identify induced subgraphs with their vertex set and in particular, we shall write $x \in G$, instead of $x \in V(G)$. As usual in clique graph theory, a *clique* of a graph is a maximal complete subgraph. The *clique graph* K(G) of a graph G, is the intersection graph of the set of all cliques of G. Clearly, the clique operator K can be iterated: $K^{n+1}(G) = K(K^n(G))$. Clique graphs and iterated clique graphs have been studied extensively [11, 15, 19] and have found applications to the study of the Fixed Point Property of partially ordered sets [9] and to Loop Quantum Gravity [16–18].

When two vertices $x, y \in G$ are adjacent-or-equal we write $x \simeq y$. Let us denote by K_n , P_n , C_n and I_n the complete graph, the path graph, the cycle graph and the edgeless graph on n vertices (respectively). We also use standard notation for the *join* of two graphs, H + G (also known as *Zykov* sum) and for isomorphic graphs, $G \cong H$.

Given G, let $\mathcal{B} = \{(X, Y) \in 2^G \times 2^G \mid x \simeq y, \text{ for every } x \in X \text{ and } y \in Y\}$. Define a partial order on \mathcal{B} by $(X_1, Y_1) \preccurlyeq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$. A biclique (X, Y) of G is a maximal element of \mathcal{B} under \preccurlyeq . The biclique graph B(G) of G is the graph whose vertices are the bicliques of G and two vertices $(X_1, Y_1), (X_2, Y_2) \in B(G)$ are adjacent if and only if $X_1 \cap X_2 \neq \emptyset$ or $Y_1 \cap Y_2 \neq \emptyset$. Observe that $|B(K_n)| = 1, |B(I_n)| = n + 2$ (for $n \ge 2$), $|B(P_3)| = 4, |B(P_n)| = 3n - 3$ (for $n \ge 4$), $|B(C_3)| = 1, |B(C_4)| = 16$ and $|B(C_n)| = 3n + 2$ (for $n \ge 5$). Several variations of a biclique operator have been studied in the literature by Prisner [15], Zelinka [20], Figueroa and Llano [2], and by Groshaus et al [4–8]. The variation studied here is new as far as we know.

Our main motivation comes from Moon and Moser [12] who characterized the graphs G that maximize the number of cliques |K(G)|: for any given order $n = |G| \ge 2$, $G = H + I_3 + I_3 + \dots + I_3$ where $H \in \{I_2, I_3, I_2 + I_2, I_4\}$ is taken such that $|H| = |G| - 3\lfloor \frac{n-2}{3} \rfloor$. One would expect that these Moon-Moser graphs grow as fast as possible under iterated clique operators (i.e. that those G maximize $|K^n(G)|$ for all n), but experiments with small graphs show that that is not the case. The experiments (we used GAP and YAGS [1,3]) show that, for $n \in \{2, 3, \dots, 9\}$, $|K^2(G)|$ is maximized by $G = H + I_2 + I_2 + \dots + I_2$, where $H \in \{I_2, I_3\}$ (although when $n \in \{4, 5\}$, there are a few other graphs that also attain the maximum $|K^2(G)|$). The experiments also suggest that $|K^2(G)|$ is bigger when G is a suspension than when it is not. Here, we say that G is the suspension of G_0 when $G \cong S(G_0) := G_0 + I_2$. In this work we start the study of graphs maximizing $|K^2(G)|$, by studying first the case when $G = S(G_0)$. A few extra standard notations used here are: $N_G(x), N(x), N_G[x], N[x]$ for open and closed neighborhoods of the vertex x (in the graph G); G - x for vertex removal; \overline{G} for the complement graph and $G \times H$ for tensor product of graphs. We define the *d*-dimensional octahedral graph by $O_d = I_2 + I_2 + \cdots + I_2$ (*d* times) and the circle product by $G \circ H = \overline{\overline{G} \times \overline{H}}$. Note that in $G \circ H$, $(g_1, h_1) \simeq (g_2, h_2)$ if and only if $g_1 \simeq g_2$ in G or $h_1 \simeq h_2$ in H.

The following theorem characterizes $K^2(S(G))$ in terms of the biclique operator B.

Theorem 1 $K^2(S(G)) \cong B(K(G))$.

Proof. From the definition of S(G), there are vertices $x, y \in S(G) \setminus G$, $x \neq y$, such that N(x) = N(y) = G. Note that if $p \in K(S(G))$, then $p \setminus \{x\} \in K(G)$ or $p \setminus \{y\} \in K(G)$. Similarly, if $q \in K(G)$ then $q \cup \{x\}, q \cup \{y\} \in K(S(G))$. Define $\tau : B(K(G)) \to K^2(S(G))$ by

$$\tau((X,Y)) = \left(\bigcup_{q \in X} \{q \cup \{x\}\}\right) \cup \left(\bigcup_{q \in Y} \{q \cup \{y\}\}\right).$$

We claim that τ is an isomorphism of graphs. Let $P = (\bigcup_{i=1}^{r} \{q_i \cup \{x\}\}) \cup (\bigcup_{i=1}^{s} \{q'_i \cup \{y\}\})$ be a clique of K(S(G)), then $W = (\bigcup_{i=1}^{r} q_i, \bigcup_{i=1}^{s} q'_i)$ is a biclique of K(G), it follows that $\tau(W) = P$, thus τ is surjective.

Let $W_1 = (X_1, Y_1)$ and $W_2 = (X_2, Y_2)$ be bicliques of K(G), if $\tau(W_1) = \tau(W_2)$ then for $A_1 = \bigcup_{q \in X_1} \{q \cup \{x\}\}$ and $A_2 = \bigcup_{q \in X_2} \{q \cup \{x\}\}$ we have that $A_1 = A_2$, hence $X_1 = X_2$. A similar argument shows that $Y_1 = Y_2$, consequently $W_1 = W_2$ and τ is injective. Finally, the bicliques W_1 and W_2 are adjacent in B(K(G)) if and only if there is a clique $q \in K(G)$ such that $q \in (X_1 \cap X_2) \cup (Y_1 \cap Y_2)$, since the last statement is true if and only if $q \cup \{x\} \in \tau(W_1) \cap \tau(W_2)$ or $q \cup \{y\} \in \tau(W_1) \cap \tau(W_2)$ (i.e. when $\tau(W_1)$ and $\tau(W_2)$ are adjacent in $K^2(S(G))$), we conclude that τ preserves adjacency. \Box

Note that $B(G) \cong S(H)$ for some H if and only if (\emptyset, G) and (G, \emptyset) are bicliques of G and that this happens exactly when G is not a *cone* (i.e. G has no universal vertices). It follows from Theorem 1 that $K^2(S(G))$ is again a suspension exactly when G is not K-cone (i.e. when K(G) is not a cone).

It is well known that the clique graph of a Zykov sum is a circle product, $K(G+H) \cong K(G) \circ K(H)$ [10,13,14]. Surprisingly, the biclique operator also shares this property:

Theorem 2 For any graphs G and H, we have: $B(G + H) \cong B(G) \circ B(H)$. **Proof.** Define $\phi : B(G + H) \rightarrow B(G) \circ B(H)$ by $\phi((G_1 \cup H_1, G_2 \cup H_2)) =$ $((G_1, G_2), (H_1, H_2))$, where G_1 and G_2 are subsets of V(G) and H_1 and H_2 are subsets of V(H). We proceed to show that ϕ is an isomorphism of graphs.

If $T = ((G_1, G_2), (H_1, H_2)) \in B(G) \circ B(H)$ then $W = (G_1 \cup H_1, G_2 \cup H_2)$ is a biclique of G + H, hence $\phi(W) = T$ and ϕ is surjective. It is straightforward to verify that ϕ is injective. Now, the bicliques $W_1 = (G_1 \cup H_1, G'_1 \cup H'_1)$ and $W_2 = (G_2 \cup H_2, G'_2 \cup H'_2)$ of G + H are adjacent-or-equal in B(G + H)if and only if $(G_1 \cup H_1) \cap (G_2 \cup H_2) \neq \emptyset$ or $(G'_1 \cup H'_1) \cap (G'_2 \cup H'_2) \neq \emptyset$, but this last statement is true if and only if $(G_1, G'_1) \simeq (G_2, G'_2)$ in B(G) or $(H_1, H'_1) \simeq (H_2, H'_2)$ in B(H), therefore $\phi(W_1) \simeq \phi(W_2)$ in $B(G) \circ B(H)$ (i.e. ϕ preserves adjacency). \Box

Given a graph G and a subset $X \subseteq G$, define $N[X] = \bigcap_{x \in X} N_G[x]$ (with $N[\emptyset] = V(G)$), and define $\beta : 2^G \to B(G)$ by $\beta(X) = (N[N[X]], N[X])$. Observe that β is surjective, and in particular, $|B(G)| \leq 2^{|G|}$. The equality holds exactly when G is an octahedral graph:

Theorem 3 The following statements are equivalent:

- 1. β is injective.
- 2. $N[X] \neq N[X']$ for all $X, X' \subseteq G$ with $X \neq X'$.
- 3. $N[G-x] \neq N[G]$ for all $x \in G$.
- 4. For all $x \in G$, there is some $y \in G$ such that $x \not\simeq y$ and $y \simeq z$ for all $z \in G x$.
- 5. n = |G| is even and $G \cong O_d$ for $d = \frac{n}{2}$.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are straight forward. For (4) \Rightarrow (5), observe that x is the only vertex of G satisfying $y \not\simeq x$ and hence we must have $x \simeq z$ for all $z \in G - y$. It follows that $G \cong I_2 + I_2 + \cdots + I_2$ (d times). Finally, for (5) \Rightarrow (1), consider two different $X_1, X_2 \subseteq O_d$. Assume, without loss of generality, that $X_1 \setminus X_2 \neq \emptyset$, then there is a vertex $z \in X_1 \setminus X_2$ and a vertex $w \in O_d$ with $w \not\simeq z$. Note that N[w] = G - z, hence $w \in N[X_2]$ and $w \notin N[X_1]$. Therefore $N[X_1] \neq N[X_2]$.

By the previous theorem, in the even order case, |G| = n = 2d, the maximum value of |B(G)| is 2^n and it is achieved exactly when $G \cong O_d$. In the odd order case, a good lower bound for the maximum value of |B(G)|, comes from the graph $G = I_3 + O_d$:

Lemma 4 Let $n = 2d + 3 = |I_3 + O_d|$, then $|B(I_3 + O_d)| = \frac{5}{8} \cdot 2^n$

Proof. By Theorem 2, $B(I_3 + O_d) \cong B(I_3) \circ B(O_d)$, hence $|B(I_3 + O_d)| = |B(I_3) \circ B(O_d)| = |B(I_3)| \cdot |B(O_d)| = 5 \cdot 2^{2d} = \frac{5}{8} \cdot 2^n$.

A full characterization of graphs G maximizing |B(G)| requires more work and lies beyond the scope of this extended abstract, but it can be proved that the graphs maximizing |B(G)| are precisely those considered so far:

Theorem 5 Let G be a graph of order n > 1, maximizing |B(G)|. Then, if n = 2d, we have that $G \cong O_d$; otherwise, n = 2d + 3 and $G \cong I_3 + O_d$.

It is known that the clique graph of an octahedral graph is again an octahedral graph (indeed: $K(O_d) \cong O_{2^{d-1}}$, see [13]) and we proved here that octahedral graphs maximize |B(G)|. Since $K^2(S(G)) \cong B(K(G))$, it follows that $K^2(O_d) = K^2(S(O_{d-1})) \cong B(K(O_{d-1})) \cong B(O_{2^{d-2}})$. This results, together with the experimental evidence mentioned before, suggest that the graphs maximizing $|K^2(G)|$ are the same as those maximizing |B(G)|, which are described in Theorem 5 (save for the few exceptions mentioned earlier when $n \in \{4, 5\}$). Certainly, if G has even order and maximizes $|K^2(G)|$, we have the following bound:

$$|K^{2}(G)| \ge |K^{2}(O_{d})| = |B(O_{2^{d-2}})| = 2^{2^{d-1}} = \sqrt{2}^{\sqrt{2}^{n}}.$$

References

- C. Cedillo, R. MacKinney-Romero, M.A. Pizaña, I.A. Robles and R. Villarroel-Flores. YAGS Yet Another Graph System, Version 0.0.2, 2016. http://xamanek.izt.uam.mx/yags/.
- [2] A.P. Figueroa and B. Llano. An infinite family of self-diclique digraphs. Appl. Math. Lett. 23 (2010) 630–632.
- [3] The GAP Group. GAP Groups, Algorithms, and Programming, Version 4.3, 2002. (http://www.gap-system.org).
- [4] M. Groshaus, A.L.P. Guedes and L. Montero. Almost every graph is divergent under the biclique operator. Discrete Appl. Math. 201 (2016) 130–140.
- [5] M. Groshaus, P. Hell and J. Stacho. On edge-sets of bicliques in graphs. Discrete Appl. Math. 160 (2012) 2698–2708.
- [6] M. Groshaus and L.P. Montero. On the iterated biclique operator. J. Graph Theory 73 (2013) 181–190.
- M. Groshaus and J.L. Szwarcfiter. Biclique graphs and biclique matrices. J. Graph Theory 63 (2010) 1–16.

- [8] M.E. Groshaus and L.P. Montero. The number of convergent graphs under the biclique operator with no twin vertices is finite. In LAGOS'09-V Latin-American Algorithms, Graphs and Optimization Symposium, volume 35 of Electron. Notes Discrete Math., pages 241–246. Elsevier Sci. B. V., Amsterdam, 2009.
- [9] S. Hazan and V. Neumann-Lara. Fixed points of posets and clique graphs. Order 13 (1996) 219–225.
- [10] F. Larrión, V. Neumann-Lara and M.A. Pizaña. On expansive graphs. European J. Combin. 30 (2009) 372–379.
- [11] F. Larrión, M. Pizaña and R. Villarroel-Flores. On self-clique shoal graphs. Discrete Applied Mathematics 205 (2016) 86 - 100.
- [12] J.W. Moon and L. Moser. On cliques in graphs. Israel J. Math. 3 (1965) 23–28.
- [13] V. Neumann-Lara. On clique-divergent graphs. In Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pages 313–315. CNRS, Paris, 1978.
- [14] V. Neumann-Lara. Clique divergence in graphs. In L. Lovász and V.T. Sós, editors, Algebraic methods in graph theory, Coll. Math. Soc. János Bolyai, vol. 25 Szeged, pages 563–569. North-Holland, Amsterdam, 1981.
- [15] E. Prisner. Graph dynamics. Longman, Harlow, 1995.
- [16] M. Requardt. (Quantum) spacetime as a statistical geometry of lumps in random networks. Classical Quantum Gravity 17 (2000) 2029–2057.
- [17] M. Requardt. Space-time as an order-parameter manifold in random networks and the emergence of physical points. In *Quantum theory and symmetries* (Goslar, 1999), pages 555–561. World Sci. Publ., River Edge, NJ, 2000.
- [18] M. Requardt. A geometric renormalization group in discrete quantum spacetime. J. Math. Phys. 44 (2003) 5588–5615.
- [19] J.L. Szwarcfiter. A survey on clique graphs. In B.A. Reed and C. Linhares-Sales, editors, *Recent advances in algorithms and combinatorics*, volume 11 of *CMS Books Math./Ouvrages Math. SMC*, pages 109–136. Springer, New York, 2003.
- [20] B. Zelinka. On a problem of E. Prisner concerning the biclique operator. Math. Bohem. 127 (2002) 371–373.