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Abstract. A locally nK2 graph G is a graph such that the set of neighbors of any vertex
of G induces a subgraph isomorphic to nK2. We show that a locally nK2 graph G must
have at least 6n − 3 vertices, and that a locally nK2 graph with 6n − 3 vertices exists if
only if n ∈ {1, 2, 3, 5}, and in these cases the graph is unique up to isomorphism. The case
n = 5 is surprisingly connected to a classic theorem of algebraic geometry: The adjacency
relation among the vertices of the only locally 5K2 graph on 6n − 3 = 27 vertices is the
same as the incidence relation among the 27 straight lines on any nonsingular complex,
projective cubic surface.

1. Introduction

All our graphs are finite, simple and connected. If x is a vertex of the graph G, we denote
by NG(x) the subgraph of G induced by the neighbors of x in G. A graph G is called
locally homogeneous if there is a graph H such that NG(x) ∼= H for all x ∈ G. There is
an ample literature on locally homogeneous graphs, see for example: [1, 2, 3, 4, 5, 6, 7],
where the problems of realization (given H , find a (finite) graph G which is locally H) and
characterization (given H , characterize all locally H graphs) are addressed.

The graph nK2 is the disjoint union of n copies of the complete graph K2 on two vertices.
For n = 1 it is immediate that the only locally nK2 is K3. For each n ≥ 2 there is an infinite
number of finite graphs which are locally nK2, see the construction techniques of [3, 6, 7].
We will show in section 2 that the number of vertices for a locally nK2 graph is bounded
below by 6n− 3, and then our main result:

Theorem. A locally nK2 graph G with 6n−3 vertices exists if, and only if, n ∈ {1, 2, 3, 5},

and in those cases, it is unique up to isomorphism.

We give a simple description of the three graphs, besides K3, that have this extremal
property.

In this paper, a maximal complete subgraph is called a clique. We identify each induced
subgraph of G with its vertex set. The adjacency relation will be denoted as ∼.
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2. Proof of the theorem

From now on, assume G to be a locally nK2 graph and n ≥ 2. First thing we note is that
the cliques of G are exactly its triangles, and no edge of G is in two cliques. We will use
this property extensively.
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Figure 1. A triangle in G and its neighbours.

Let T = {a, b, c} be a triangle of G (cf. Figure 1). If there is some x ∈ N(a) ∩ N(b)
with x 6= c, vertex b would have a path on three vertices in its neighbourhood. Hence
N(a) ∩ N(b) = {c} and since our situation is symmetrical on a, b and c, it follows that
|G| ≥ |N(a) ∪ N(b) ∪ N(c)| = 6n − 3. Hence:

Lemma 1. [8] A locally nK2 graph G has at least 6n − 3 vertices. �

Assume from now on that G has 6n − 3 vertices. Fix a triangle T = {a, b, c} of G. By the
previous argument, V (G) = N(a)∪N(b)∪N(c). Let’s label the vertices of G as in Figure 1,
that is, we set N(a) = {b, c} ∪ {a1, a2, . . . , an−1} ∪ {ā1, ā2, . . . , ān−1} with ai ∼ āi; and we
also label the neighbors of b and c in a similar way. We will use letters x, y, z to refer to
(generic) elements in {a, b, c}. Likewise, (say) xi and x̄i are generic elements in V (G) − T ,
but we must always have that {x, xi, x̄i} is a triangle. Unless otherwise stated we assume
that no two of x, y and z are equal.

Since NG(x) ∼= nK2, it follows that the 2n−2 vertices of NG(xi) besides x and x̄i are exactly
half of the 4n − 4 vertices in G − N [x] = {y1, ȳ1, . . . , yn−1, ȳn−1} ∪ {z1, z̄1, . . . , zn−1, z̄n−1}.
But we can not have both xi ∼ yj and xi ∼ ȳj , for otherwise, the edge yj ȳj would be in two
triangles. Likewise, we could not have both xi ∼ yj and x̄i ∼ yj . Hence, it follows that for
all j, the vertex xi is adjacent to exactly one of yj, ȳj and exactly one of zj , z̄j and that x̄i

is adjacent to exactly the other two. So we just proved that:

Lemma 2. The edges connecting {xi, x̄i} to {yj , ȳj} form a perfect matching. �

Therefore, we know that the connections from {xi, x̄i} to {yj, ȳj} can only be either straight

(xi ∼ yj and x̄i ∼ ȳj) or twisted (xi ∼ ȳj and x̄i ∼ yj). This allows us to use an auxiliary
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representation for those connections of G: Set Ai = {ai, āi}, Bi = {bi, b̄i} and Ci = {ci, c̄i}.
Let Hn be the complete tripartite graph on 3n− 3 vertices with n− 1 vertices in each part.
We assume without loss that the vertices of Hn are precisely the aforementioned Ai, Bi and
Ci for i ∈ I := {1, . . . , n − 1}. Moreover we set the parts of Hn to be precisely {Ai}i∈I ,
{Bi}i∈I and {Ci}i∈I . Now, whenever the connections from Xi := {xi, x̄i} to Yj := {yi, ȳi}
are straight in G, we paint the edge XiYj blue in Hn, otherwise (when the connections are
twisted) we paint it red. It should be clear that the possible adjacencies of G (compatible
with Lemma 2) are in bĳection with the edge-colorings of Hn.

Now, for any triangle AiBjCk of Hn, we observe that Ai ∪Bj ∪Ck induces a disjoint union
of two triangles in G if an only if AiBjCk has an even number of red edges. In such case,
we say that AiBjCk is a good triangle. We say that an edge-coloring of Hn with colors blue
and red is valid if every edge of Hn is contained in exactly one good triangle. Since every
edge of G is contained in exactly one triangle, we have:

Lemma 3. Any locally nK2 graph G with 6n − 3 vertices determines a valid edge-coloring

of Hn and conversely, a valid edge-coloring leads to a locally nK2 graph. �

However, different colorings can lead to isomorphic locally nK2 graphs, and in this case,
we say that the colorings are equivalent. For example, interchanging the names of the two
vertices of a pair Xi = {xi, x̄i} in G would mean that all edges of Hn incident to vertex
Xi would switch colors. In this case, we say that we applied a twist to the vertex Xi. We
can also reorder some vertices of one of the parts of Hn and obtain an equivalent coloring.
Twists and reorderings (of the kind described) will be the only two operations that we will
use to reduce any edge-coloring of Hn to one, specific, canonical one.

Lemma 4. For each n ≥ 2 any two valid edge-colorings of Hn are equivalent. In particular,

for each n ≥ 2 there is, up to isomorphism, at most one locally nK2 graph on 6n−3 vertices.

Proof: We start, then, with a valid coloring of Hn.

Step 1. The edges A1Bi for i = 1, . . . , n − 1 can be assumed to be all blue, by applying a
twist to some of the Bi if necessary. Similarly, all edges of the form A1Ci for i = 1, . . . , n−1
and AiB1 for i = 2, . . . , n − 1 can be assumed to be blue.

C1B1

Bn−1 Cn−1

An−1

A1

Figure 2. Edge colorings of the tripartite graph Hn
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Step 2. Since each edge of the form A1Bi for i = 1, . . . , n−1 is in exactly one good triangle,
for each vertex in {B1, . . . , Bn−1} there must be exactly a blue edge joining it to a vertex
in {C1, . . . , Cn−1}. Moreover, all such blue edges form a perfect matching, since otherwise
there would be an edge in two good triangles. By reordering {C1, . . . , Cn−1} if necessary,
we can assume that the edges BiCi for i = 1, . . . , n− 1 are blue, and so all edges BiCj with
i 6= j are red, see Fig. 2 (left).

Note that this settles the case n = 2, so we can assume n ≥ 3 in what follows.

Step 3. The edges C1Ai for i = 2, . . . n− 1 are now forced to be red, for otherwise the edge
B1C1 would be in two good triangles.

Step 4. Since each edge of the form AiB1 for i = 2, . . . , n−1 is in exactly one good triangle,
for each vertex in {C2, . . . , Cn−1} there must be exactly a red edge joining it to a vertex
in {A2, . . . , An−1}, and in fact, these red edges form a perfect matching between these two
sets (if, for example, the edges C2A2 and C3A2 were red, the edge A2B1 would be in two
good triangles), so by reordering {A2, . . . , An−1} we can assume without loss that the edges
CiAi for i = 2, . . . , n− 1 are red, and so all edges CiAj with 2 ≤ i, j ≤ n− 1, i 6= j are blue.

Step 5. If n = 3, then the only edge we still have to consider is A2B2, and this has to be
blue for C1A2 to be in a good triangle. So assume n ≥ 4. An edge AiBj for 2 ≤ i, j ≤ n−1,
i 6= j has to be red, since if it were blue it would be in the good triangles AiBjC1 and
AiBjCj . This forces, for each i = 2, . . . , n − 1, that the edge AiBi is blue, since otherwise
the edge C1Ai is in no good triangle.

Hence, any valid edge-coloring of Hn is equivalent to the specific coloring obtained. �

However, we claim that if n = 4 or n ≥ 6, the coloring just described is not valid. Consider
the edge A3B2, which is painted red. If n = 4, it is not contained in any good triangle (the
triangles which contain such edge have the other two edges both red or both blue). If n ≥ 6,
it is contained in at least two good triangles (A3B2C4 and A3B2C5).

It only remains to be shown that in the remaining cases n = 2, 3, 5, the described coloring
is valid, thus producing the required locally nK2 graphs. Of course, this can be done by
carefully checking the coloring or the associated graph Hn, but it is also enough to show for
each n any such locally nK2 graph Gn on 6n− 3 vertices. This latter approach happens to
be more direct: Using Nešetril’s notation for products, we obtain G2 := K3�K3

∼= K3×K3.
Also, G3 := L(K6) is the the complement of the line graph of K6, also known as the Kneser
graph KG6,2, its vertices are {A ⊆ {1, 2, 3, 4, 5, 6} | |A| = 2 } and AA′ is an edge whenever
A ∩ A′ = ∅. The remaining graph G5 can be described combinatorially by its triangles:

{1, 2, 25}, {1, 9, 17}, {1, 11, 19}, {1, 13, 21}, {1, 15, 23}, {2, 10, 18}, {2, 12, 20}, {2, 14, 22},
{2, 16, 24}, {3, 4, 25}, {3, 9, 20}, {3, 11, 18}, {3, 14, 23}, {3, 16, 21}, {4, 10, 19}, {4, 12, 17},
{4, 13, 24}, {4, 15, 22}, {5, 6, 25}, {5, 9, 22}, {5, 12, 23}, {5, 13, 18}, {5, 16, 19}, {6, 10, 21},
{6, 11, 24}, {6, 14, 17}, {6, 15, 20}, {7, 8, 25}, {7, 9, 24}, {7, 12, 21}, {7, 14, 19}, {7, 15, 18},
{8, 10, 23}, {8, 11, 22}, {8, 13, 20}, {8, 16, 17}, {9, 10, 26}, {11, 12, 26}, {13, 14, 26}, {15, 16, 26},
{17, 18, 27}, {19, 20, 27}, {21, 22, 27}, {23, 24, 27}, {25, 26, 27}.



SMALL LOCALLY nK2 GRAPHS 5

It can also be described as the complement of the Schläfli graph. But, perhaps the easiest
way to verify the existence of such graph is just to recall the classical 27 straight line
theorem from algebraic geometry, which says (see for instance Proposition 7.3 in [9]) that
any nonsingular cubic surface S ⊂ CP 3 contains exactly 27 lines and that any of them
intersects exactly 10 of the other lines, which in turn intersect each other in pairs. Hence
our G5 is simply the incidence graph of these straight lines.

Quod erat demonstrandum.
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