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Abstract. We attach topological concepts to a simple graph by means of the simplicial complex of its
complete subgraphs. Using Forman’s discrete Morse theory we show that the strong product of two graphs
is homotopic to the topological product of the spaces of their complexes. As a consequence, we enlarge the
class of clique divergent graphs known to be homotopy equivalent to all its iterated clique graphs.

1. Introduction

Our graphs are finite and simple. As in Harary’s book [12], to which we refer for graph theory, a clique of a
graph G is a maximal complete subgraph of G, or just its set of vertices, as we identify induced subgraphs
with their vertex sets. The clique graph K(G) is the intersection graph of the cliques of G. The iterated
clique graphs Kn(G) are defined recursively by K0(G) = G, Kn+1(G) = K

(
Kn(G)

)
. If the sequence

G,K(G),K2(G), . . . has only a finite number of non-isomorphic graphs (equivalently, there are 0 ≤ m < n
such that Km(G) ∼= Kn(G)), we say that G is K-convergent, otherwise G is K-divergent. We refer to [23]
for a survey on clique graphs, and to [1, 4, 6, 19] for recent work on them. Iterated clique graphs have been
applied to Loop Quantum Gravity [22].

If G is a graph, its Whitney complex is the simplicial complex ∆(G) whose simplices are the complete
subgraphs of G. A simplicial complex ∆ will then be called a Whitney complex if there is a graph G such
that ∆ = ∆(G). (Such a G would have to be the 1-skeleton of ∆.) We denote by |G| the geometric
realization of the complex ∆(G), and call it the geometric realization of the graph G. We will say that
the graphs G1, G2 are homotopy equivalent, and denote it by G1 ' G2, if their geometric realizations |G1|
and |G2| are so. Whitney complexes are also called clique complexes in the literature, but in this term the
use of clique is not consistent with ours, so we prefer naming these complexes after H. Whitney, who proved
in [25] that any graph G such that |G| is the two dimensional sphere is Hamiltonian. Note that every order
complex ∆(P ) (where P is a poset) is a Whitney complex ∆(G), where G is the comparability graph of P .

Several studies have considered the relation between the topology of the Whitney complex of a graph and the
dynamical behavior of the graph under the clique operator, as well as the effect of the clique operator on the
homotopy type of a graph. More specifically, the first general condition ensuring that a graph is homotopy
equivalent to its clique graph (G ' K(G)) was given by Prisner in [21] (see our § 5). A stronger result was
found by Larrión, Neumann-Lara and Pizaña in [14], which was further strengthened and generalized by the
present authors in [18]. Moreover, two infinite families of K-divergent graphs that satisfy G ' Kn(G) for
all n ≥ 0 were shown in [17].

In this note we apply Forman’s discrete Morse theory [11] to the analysis of the homotopy type of Whitney
complexes. In §2 we review quickly the needed facts from this theory, and use it to prove a result of Welker
which generalizes previous conditions under which a vertex or an edge can be removed from a graph without
affecting its homotopy type. In §3 we illustrate the use of this result by giving a family of graphs G such
that we can determine explicitly the homotopy type of K(G) and K2(G). Our chief application of discrete
Morse theory (Theorem 4.2) can be of independent interest, it shows that, given any two graphs G1, G2, the
following holds:

(1) |G1 �G2| ' |G1| × |G2|,
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where we are using Nešetřil’s notation for the boxtimes product (also called strong product). In fact, the
equivalence (1) is derived from a simple homotopy, that is, one obtained by collapsing free faces. Since the
clique operator distributes over the boxtimes product [20], Theorem 4.2 can be used, as we shall do in §5,
to extend the class of known K-divergent graphs such that all their iterated clique graphs have the same
homotopy type. We also prove that given any graph G, there is another graph G′ which is K-divergent and
has the same homotopy type as G.

2. Elements of discrete Morse theory

Let ∆ be a (finite) simplicial complex, which we identify with its set of simplices, or faces. We follow Jonsson’s
presentation [13, Chap. 4] of Forman’s discrete Morse theory and all its conventions, in particular, we admit
that ∅ ∈ ∆ whenever the set of vertices of ∆ is not empty. The reader can also find the fundamentals on
homotopy type of simplicial complexes in [13]. A matching M on ∆ is a family of pairs {σ, τ} ⊆ ∆ such
that no face of ∆ is in more than one pair. The faces that are in a pair of M are said to be matched, the
rest are called critical. We say thatM is an element matching if for every pair ofM there are σ ∈ ∆ and
a vertex v such that said pair is equal to {σ − v, σ + v}. We will consider only element matchings. For any
fixed vertex v we always have an element matchingM(v) on ∆ given by:

(2) M(v) = { {σ − v, σ + v} | σ + v ∈ ∆ } .

IfM is an element matching, the digraph D(∆,M) has vertex set ∆, and an arrow σ → τ if either:

(1) {σ, τ} ∈ M, and τ = σ + v for some v 6∈ σ, or
(2) {σ, τ} 6∈ M and σ = τ + v for some v 6∈ τ .

We say that M is acyclic if D(∆,M) has no directed cycle. For σ, τ ∈ ∆ we write σ  τ if there is a
directed path in D(∆,M) from σ to τ . For V,W ⊆ ∆ we write V  W if there are σ ∈ V, τ ∈ W such that
σ  τ , otherwise we will write V 6 W. The following is a special case of Lemma 4.1 of [13]:

Lemma 2.1. Let the vertex v of ∆ be such that σ+v ∈ ∆ for all σ ∈ ∆, i.e. ∆ is a cone with apex v. Then
the element matchingM(v) of equation (2) is in fact an acyclic matching on ∆ with no critical simplices.

Lemma 2.2. (Lemma 4.2 from [13]) Let ∆ be a simplicial complex, Q a poset, and F : ∆→ Q a poset map,
where ∆ is ordered by inclusion. For each q ∈ Q, letMq be an acyclic matching on ∆ such that all elements
of the pairs ofMq are elements of F−1(q), and letM = ∪q∈QMq. ThenM is an acyclic matching on ∆.

The following is a reformulation of a theorem due to Forman ([11]).

Theorem 2.3. (Theorem 4.4 from [13]) LetM be an acyclic matching on a simplicial complex ∆. Assume
that the subcomplex ∆0 contains all the critical faces, and that ∆0 6 ∆ \∆0. Then ∆ collapses to ∆0.

In particular, in Theorem 2.3, |∆| and |∆0| are homotopy equivalent. On the other hand, if ∆ collapses to
its subcomplex ∆0, there is an acyclic matching M on ∆ satisfying the hypotheses of Theorem 2.3. The
complex ∆ is called collapsible if it collapses to the one-vertex complex, or, equivalently, if it admits an acyclic
matching with no critical faces. The link of σ in ∆ is the complex lk∆(σ) = { τ ∈ ∆ | σ ∪ τ ∈ ∆, σ ∩ τ = ∅ }.
We will use the notation [σ,∞) = { ρ ∈ ∆ | σ ⊆ ρ }, and say that the face σ is removable if ∆ collapses to
∆ \ [σ,∞). Notice that [σ,∞) = {σ ∪ τ | τ ∈ lk∆(σ) }.

If the face σ of ∆ is such that lk∆(σ) is collapsible, letM be an acyclic matching on lk∆(σ) with no critical
faces. Now takeM′ = { {σ ∪ τ, σ ∪ ρ} | {τ, ρ} ∈ M}, which is an acyclic matching in ∆ whose critical faces
are precisely those of the subcomplex ∆0 = ∆ \ [σ,∞), so ∆0 6 ∆ \∆0 and we have, by Theorem 2.3, the
following result of Welker:

Proposition 2.4. (Lemma 2.7 from [24]) Any face with collapsible link is removable.
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In the case of a Whitney complex ∆(G) the removals of vertices and edges of the graph G are specially
useful, because they lead again to Whitney complexes. The link in ∆(G) of a vertex v ∈ G is just (the
Whitney complex of) its open neighborhood N(v), the set of vertices adjacent to v, and the link of an edge
e = {u, v} is the common neighborhood N(e) = N(u)∩N(v). Some particular cases of Proposition 2.4 have
been discovered for Whitney complexes. The removability of a vertex v such that N(v) is a cone goes back
to Prisner [21, Prop. 3.2] and was rediscovered in the context of independence complexes, see [9, Lemma 2.4].
That any edge e with N(e) complete is removable was used in [17, Prop. 2.3]. A variant of the removability
of vertices and edges with collapsible links (s-dismantlability) appears in [5, Prop.1.7, Lemma 1.6].

3. A family of examples

If the space X is homeomorphic to |∆(G)| we say that the graph G is a Whitney triangulation of X. A graph
is a Whitney triangulation of some compact surface if, and only if, the open neighborhood of each vertex
is either a cycle with at least four vertices or a path with at least two, with paths occurring only when the
surface is not closed [15]. We shall illustrate the usefulness of Proposition 2.4 by determining the homotopy
type of the second clique graph for a family of Whitney triangulations of the two-dimensional sphere S2.

We start by classifying vertices ofK2(G) into two types: the stars and the neckties. In any graph G, for v ∈ G
we denote by v∗ the set {Q ∈ K(G) | v ∈ Q }, which is called a star with center v and is a complete subgraph
(sometimes even a clique) of K(G). Any clique of K(G) which is not a star is called a necktie.

The girth of a graph G is the length of a shortest cycle in G. The local girth of a graph G, denoted by lg(G), is
the minimum of the girths of the open neighborhoods of vertices of G. For example, from the first paragraph
of this section we obtain that lg(G) ≥ 4 if G is a Whitney triangulation of a compact surface. More generally,
if lg(G) ≥ 4, we can define a particular case of neckties. A triangle T in a graph G is called inner if for any
of its three edges there is a triangle T ′ such that T ∩ T ′ is precisely that edge. Given an inner triangle T
in G, the necktie centered at T is the set of all cliques of G that share at least an edge with T . It is shown
in [15] that if lg(G) ≥ 4, they are indeed neckties, and that if lg(G) ≥ 5, all neckties are centered at some
inner triangle of G.

Lemma 3.1. Let G be a Whitney triangulation of a closed surface, different from the octahedron (where the
octahedron is the complement of three disjoint edges). Then:

(1) the clique graph K(G) is obtained from the dual graph of G, adding all edges between vertices on the
same face,

(2) for all vertices v ∈ G, v∗ is a clique in K(G),
(3) every clique of K(G) is either a star, or a centered necktie,
(4) the subgraph of K2(G) induced by the stars is isomorphic to G,
(5) the subgraph of K2(G) induced by the neckties is obtained from the dual of G, adding edges between

vertices at distance two and on the same face.

Proof: The cliques of G are its triangles, so the vertices of K(G) correspond bijectively to the vertices of
the dual graph of G. Two vertices in K(G) are adjacent whenever they share an edge or a vertex. But two
triangles share an edge whenever their corresponding vertices of the dual are adjacent, and two triangles
share exactly a vertex whenever their corresponding vertices in the dual are in the same face. This proves (1).

Now, if v∗ were not a clique for some v ∈ G, then there would be a triangle T intersecting all the triangles
(at least 4, the surface is closed) that contain v, but with v 6∈ T . However, this would imply that there is a
triangle in NG(v), contradicting that |G| is a compact surface, and proving (2).

For (3), we just observe that the proof of Proposition 10 in [15] still works under the hypotheses that
lg(G) ≥ 4 and G does not have an induced octahedron.

For (4), we have that v, w are adjacent in G if and only if {v, w} ⊆ Q for some clique Q, this is equivalent to
Q ∈ v∗∩w∗, and this means that v∗, w∗ (which are vertices of K2(G) by (2)) are adjacent in K2(G) because
they are distinct (in our case, they only share the two triangles containing the edge {v, w}).
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Now, for (5), we have in the paragraph before Theorem 11 from [15], that under our hypothesis two neckties
QT , QT ′ (centered respectively on the triangles T , T ′) are adjacent in K2(G) if and only if T , T ′ share an
edge, or they share exactly one vertex and are joined by a crossbar (that is, an edge joining a vertex a ∈ T to
some vertex b ∈ T ′, where neither a nor b is the point in T ∩T ′). Hence the adjacencies in K2(G) determine
exactly the adjacencies in the dual of G mentioned in (5), and this finishes the proof. �

If n ≥ 5, let G be the suspension of the n-gon Cn. Then G is obtained from Cn adding two new vertices
which we call the poles and are adjacent to all the equatorial vertices of Cn but not to each other. Then G
is a Whitney triangulation of S2. We view G as inscribed in the unit sphere with the poles in the z-axis and
the equatorial vertices in the xy-plane.

The cliques of G are its triangles, and by Lemma 3.1.1, the clique graph K(G) is the n-gonal prism P1, but
with the faces made complete. We view K(G) as inscribed in a smaller sphere, centered also at the origin,
in such a way that the n-gonal faces of P1 are horizontal, so the n rectangular walls are vertical. By the
results of [14] and [18] mentioned in the introduction, the only Whitney triangulation of a compact surface
which is not homotopic to its clique graph is the octahedron, so K(G) ' G.

From Lemma 3.1.4, the stars induce a subgraph of K2(G) which is isomorphic to G and they can be depicted
as above in the unit sphere. From Lemma 3.1.3, the neckties correspond to the triangles of G, and induce a
subgraph of K2(G) which is isomorphic to an n-gonal prism with the rectangular faces made complete and
the n-gonal faces squared (that is, add the chords between vertices at distance 2), and can be depicted in
the smaller sphere as above in such a way that, for any equatorial vertex v ∈ G, the star v∗ projects radially
into the center of the wall of P1 defined by the neckties centered on each of the four triangles in v∗ (this is
the wall of v).

The connections between the two subgraphs are as follows. For each pole v ∈ G the star v∗ intersects all the
neckties, whereas, if v ∈ Cn is an equatorial vertex of G, the star v∗ only intersects the eight neckties in the
union of the wall of v with the two neighboring walls. In fact, a star intersects a necktie if, and only if, the
center of the star lies in the union of the necktie (that is, the set of all vertices in some clique of the necktie)

Proposition 3.2. Let G be the suspension of Cn for n ≥ 5. Then K(G) ' G ' S2, K2(G) ' S3 if n = 5,
K2(G) ' S3 ∨ S3 ∨ S3 if n = 6, and K2(G) ' S2 if n ≥ 7.

Proof: Let us denote by P2, the subgraph of K2(G) induced by the neckties. We observe that K2(G) is
the suspension of its subgraph H induced by the neckties and the equatorial stars. We will prove first that
H ' P2. See Figure 1 for a partial depiction of H in the case that n = 5.

Figure 1. The graph H for n = 5. Only the edges from one of the equatorial stars to P2
were depicted.

Consider an edge e = {u∗, v∗} in H between equatorial stars. Then NH(e) consists of the 6 vertices of P2
in the union of the walls of u and v, and this is a cone with apex in the intersection of those walls. By
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Proposition 2.4 we can remove from H the edges between equatorial stars, obtaining a graph which is
homotopic to H and which we still call H.

Now the open neighborhood N = NH(v∗) of any equatorial star v∗ consists of the eight vertices of P2 in
the union of the wall of v with the two neighboring walls. By Proposition 2.4, we will be able to remove the
equatorial stars, thus ending our proof that H ' P2, if we show that N is collapsible.

Take a vertex x in N , but not in the wall of v. Then NN (x) is the cone over a path of length three if n = 5
and a diamond (that is, a cone over a path of length two) if n ≥ 6, hence we can remove x from N by
Proposition 2.4. The resulting subgraph N ′ is a cone and therefore collapsible. It follows that H ' P2, as
we claimed. In Figures 2, 3 and 4 we show the graph P2 for several values of n.

Figure 2. n = 5 Figure 3. n = 6 Figure 4. n = 7

Now, for n = 5, we have that P2 is isomorphic to K(G), which we know is homotopic to S2.

For n = 6, consider a (graph theoretic) perfect matching in P2, formed with one diagonal edge from each
wall. By Proposition 2.4 we can successively remove each edge of the matching, since its link is a path
of length three, hence contractible. More precisely, if we number the vertices at the top of P with the
numbers 1 to 6 and those at the bottom with 7 to 12, with 1 above 7 and both increasing in the same
direction, then we remove the edges 2−7, 3−8, etc. Call T the the resulting graph. Then the 2-dimensional
complex ∆(T ) has a subcomplex ∆0, defined as ∆0 = ∆(T ) \ {{1, 3, 5}, {2, 4, 6}, {7, 9, 11}}, and which is
depicted in Figure 5. The complex ∆0 is collapsible. Applying Lemma 10.2 from [3] by collapsing ∆0 in ∆,
we obtain that ∆(T ) ' S2 ∨ S2 ∨ S2, which finishes the proof of the claim for n = 6.

7

9
11

12 8
10

1

3
5

6 2
4

Figure 5. Collapsible subcomplex ∆0

Finally, for n ≥ 7 clearly we can remove all the chords in both the top and the bottom of P2 to get a graph
which is homotopic to S1.

Since K2(G) is the suspension of H and H is homotopy equivalent to P2, it follows that K2(G) is homotopy
equivalent to the suspension of P2, and the theorem follows. �
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4. The boxtimes product

We begin with some definitions and remarks for simplicial complexes in general. If ∆ and ∆′ are simplicial
complexes, their categorical product is the complex ∆ ⊗∆′ with vertex set V (∆) × V (∆′) and σ ∈ ∆ ⊗∆′
whenever π(σ) ∈ ∆ and π′(σ) ∈ ∆′, where π and π′ are the projections. As observed in [7, §3], one problem
is that the categorical product “is not well behaved, in the sense that it does not commute with geometric
realization”. The usual way to solve this problem is to order the simplexes. In each of ∆ and ∆′, fix a
partial order of the set of vertices such that each simplex is totally ordered, and give V (∆) × V (∆′) the
product order. Then the ordered product of ∆ and ∆′ is the simplicial complex ∆ � ∆′ whose simplexes
are the totally ordered subsets σ of V (∆) × V (∆′) such that π(σ) ∈ ∆ and π′(σ) ∈ ∆′. For instance,
∆(K2)⊗∆(K2) ∼= ∆(K4) and ∆(K2)�∆(K2) ∼= ∆(D), where D is the diamond. The fact that |∆�∆′| is
homeomorphic to the topological product |∆|× |∆′| is well known, see for instance [8, p. 68] or [7, Prop.3.7].

We now turn to the corresponding products for graphs. Recall that the boxtimes product G1 � G2 of two
graphs G1, G2, has V (G1 � G2) = V (G1) × V (G2). If (x, y) 6= (x′, y′) then (x, y) is adjacent to (x′, y′) in
G1 � G2 if and only if x, x′ are equal or adjacent in G1 and also y, y′ are equal or adjacent in G2. The
boxtimes product is also called strong product in the literature. Now fix a partial order in each of V (G1),
V (G2) in such a way that adjacent vertices are always comparable (we could, for example, just take total
orders). With respect to these choices of partial orders, we define an ordered product G1 œG2, that has the
same vertex set V (G1)× V (G2) as G1�G2, and in which (x, y) is adjacent to (x′, y′) if they are adjacent in
the boxtimes product and they are comparable as elements in the product poset V (G1)×V (G2). The proof
of the following is straightforward:

Lemma 4.1. Let G1, G2 be graphs and fix partial orders as above. Then:
∆(G1 �G2) = ∆(G1)⊗∆(G2),
∆(G1 œG2) = ∆(G1)�∆(G2).

We can prove now another application of discrete Morse theory:

Theorem 4.2. For any graphs G1, G2, the complexes ∆(G1 �G2) and ∆(G1 œG2) are simple-homotopic,
and so the space |G1 �G2| is homotopic to the product space |G1| × |G2|.

Proof: Let G1, G2 be two finite graphs. We will use the notation A = V (G1), B = V (G2), and fix a partial
order in each of A, B in such a way that adjacent vertices are comparable. Using Lemma 4.1, we have by
the result of [8, p. 68] that |G1 œG2| ' |G1| × |G2|; hence it is enough to show that |G1 �G2| ' |G1 œG2|.
For simplicity’s sake, we will denote by ab any ordered pair (a, b) ∈ A×B.

We intend to apply Lemma 2.2 in order to get an acyclic matching on ∆(G1 � G2). For this, we define a
poset Q with underlying set:
(3) Q = { (ab, a′b′) ∈ (A×B)× (A×B) | a > a′, b < b′ } ,
and order relation given by:

(4) (ab, a′b′) > (cd, c′d′) if


a > c, or
a = c, and b > d, or
a = c, b = d, and a′ > c′ or
a = c, b = d, a′ = c′ and b′ > d′.

We observe that if σ is a complete subgraph of G1�G2, then the set of ordered pairs of elements of σ which
are in Q is totally ordered under (4). This is because if (ab, a′b′), (cd, c′d′) ∈ σ × σ, then {a, a′, c, c′} is a
complete subgraph in G1 and {b, b′, d, d′} is a complete subgraph in G2. On the other hand, it is immediate
that σ ∈ ∆(G1 �G2) \∆(G1 œG2) if and only if there are ab, a′b′ ∈ σ such that (ab, a′b′) ∈ Q.

We define a map F : ∆(G1 �G2) \∆(G1 œG2)→ Q, such that:
F (σ) = max { (ab, a′b′) ∈ Q | {ab, a′b′} ⊆ σ }
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We have that for σ, σ′ ∈ ∆(G1 � G2) \ ∆(G1 œ G2), the inclusion σ ⊆ σ′ implies that F (σ) ≤ F (σ′), so
F is a poset map. We now aim to prove that if σ ∈ F−1((ab, a′b′)), then σ + a′b ∈ F−1((ab, a′b′)) and
σ − a′b ∈ F−1((ab, a′b′)).
Let pA (pB) be the natural projection A×B → A (A×B → B). First, since a′ ∈ pA(σ) and b ∈ pB(σ) we have
σ−a′b ⊆ σ+a′b ⊆ pA(σ)×pB(σ), but since pA(σ), pB(σ) are complete subgraphs, so is pA(σ)×pB(σ). Hence
σ+a′b and σ−a′b are both complete subgraphs of G1�G2. Now a′b 6∈ {ab, a′b′} implies F (σ−a′b) = (ab, a′b′).

Next, we will prove that any possible pair of elements in Q that consists of a′b and some xy ∈ σ is less or
equal than (ab, a′b′).

Suppose then that there is xy ∈ σ such that (xy, a′b) ∈ Q (so that x > a′, y < b). It cannot happen that
x > a, since then (xy, ab) ∈ Q is greater than the maximum (ab, a′b′) among pairs of elements of σ. It
follows that x ≤ a, but then, since by hypothesis y < b, (xy, a′b) < (ab, a′b′). Then, suppose that xy ∈ σ
and (a′b, xy) ∈ Q. Since a > a′, it follows that (ab, a′b′) > (a′b, xy). Hence F (σ + a′b) = (ab, a′b′).

Now by Lemma 2.1 the element matchingM(a′b) on F−1((ab, a′b′)) is an acyclic matching without critical
simplices. By Lemma 2.2, we have defined an acyclic matchingM =

⋃
(ab,a′b′)∈QM(a′b) on ∆(G1 � G2) \

∆(G1 œG2) without critical simplices. From Theorem 2.3, we get that ∆(G1�G2) collapses to ∆(G1 œG2).
Hence we have |G1 �G2| ' |G1 œG2| ' |G1| × |G2|. �

5. Homotopy clique permanent graphs

Let us say that the graph G is homotopy clique invariant (or just homotopy K-invariant) if it is homotopic to
its clique graph: K(G) ' G. Of course this happens whenever K(G) ∼= G, but a graph needs not to be clique
invariant to be homotopy clique invariant. Not every graph is homotopy K-invariant: The n-octahedron
On (i.e. the complement of a 1-factor in K2n) is homeomorphic to the sphere Sn−1, and Neumann-Lara
[10] proved that K(On) = O2n−1 for n ≥ 3. As mentioned before, the first general condition ensuring that
a graph is homotopy clique invariant was given by Prisner in [21]: Any clique-Helly graph is homotopy
K-invariant. Here, a graph is clique-Helly if any collection of pairwise intersecting cliques has a nonempty
intersection, as for instance triangleless graphs or cones. Prisner’s result was generalized and strengthened
in [14] and [18], and the sufficient conditions found there are satisfied by any graph which is free of induced
octahedra and whose cliques are at most triangles, so all these graphs are homotopy clique invariant. In
particular, except for the 3-octahedron, any Whitney triangulation of a compact surface (with or without
border) is homotopy K-invariant.

Call the graph G homotopy clique permanent (or homotopy K-permanent) if it is homotopic to all its iterated
clique graphs: Kn(G) ' G for all n ≥ 0.

Not every homotopy K-invariant graph is homotopy K-permanent, as the first two graphs of Proposition 3.2
explicitly show. Indeed, we propose the following Conjecture:

Conjecture 5.1. Every suspension of an n-cycle for n 6= 3 is not homotopy K-permanent.

If a family F of graphs is closed under the clique operator (K(G) ∈ F for all G ∈ F) and each G ∈ F is
homotopy clique invariant, it is clear that each G ∈ F is homotopy clique permanent. For instance, Escalante
proved in [10] that the clique graph of a clique-Helly graph is again clique-Helly, so by the above-mentioned
result of Prisner we see that all clique-Helly graphs are homotopy K-permanent.

Another example is the class of dismantlable graphs: A vertex x ∈ G is called dominated if there is a vertex y,
y 6= x, such that N [x] ⊆ N [y] (in other words, N(x) is a cone, y is the apex). The class of dismantlable
graphs can be defined recursively: the one-vertex graph is dismantlable, and a graph G with at least two
vertices is dismantlable if it has a dominated vertex x with G−x dismantlable. Every dismantlable graph G
is contractible by Prisner [21]. We also have that K(G) is again dismantlable by Bandelt and Prisner [2].
Hence all dismantlable graphs are homotopy K-permanent.
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There is a common feature in the previous two families of homotopy K-permanent graphs. If G is either
clique-Helly or dismantlable, we certainly have thatKn(G) ' G for all n, but the family of theKn(G) is finite
up to isomorphism, as G is K-convergent. Indeed, clique-Helly graphs are K-convergent by Escalante [10],
and dismantlable graphs by Bandelt and Prisner [2].

However, the present authors showed in [17] that it is in fact possible for a K-divergent graph G to satisfy
Kn(G) ' G for all n, giving two infinite families of K-divergent, homotopy K-permanent graphs. All
members in one family (clockwork graphs) have the homotopy type of the circle S1 and all graphs in the
other family (locally C6 triangulations of the torus) have the homotopy type of the torus S1 × S1.

Now, with the help of Theorem 4.2, we can in particular obtain infinitely many non homotopy-equivalent,
clique divergent graphs G having homotopy type different from S1 and S1 × S1 and with the property that
Kn(G) ' G for all n:

Theorem 5.2. Let G1, G2 . . . , Gn be graphs, and G = G1 �G2 · · ·�Gn. Then:

(1) If all Gi are homotopy clique invariant, then so is G.
(2) If all Gi are homotopy clique permanent, then so is G.
(3) If at least one Gi is clique divergent, then so is G.

Proof: The proof is immediate from Theorem 4.2 and the fact, proven by Neumann-Lara in [20], that
K(G1 �G2) is isomorphic to K(G1)�K(G2). Item (3) had already been noted in [20]. �

We conclude with still another application of Theorem 4.2 and the previous observations.

Theorem 5.3. For any graph G there is a K-divergent graph G′ such that G ' G′.

Proof: The existence of a contractible and K-divergent graph B is shown explicitly in [16]. The graph
G′ = G�B then satisfies our claim. �

Remarks 5.4.

(1) Since for every simplicial complex ∆ there is a graph G with ∆(G) ' ∆ (it suffices to take the
1-skeleton of the barycentric subdivision of ∆), it follows that every “interesting” homotopy type is
realized by a K-divergent graph. As opposed to this, we do not know if there is any K-convergent
graph homotopic to S2, and we conjecture that there is none.

(2) We could obtain homotopy K-invariant and divergent graphs of homotopy types different than those
of Tn = S1 × · · · × S1, taking strong product of Tn with a clique-Helly graph, for example, a graph
consisting of several 4-cycle subgraphs sharing a vertex, which clearly has the homotopy type of a
wedge of 1-spheres.

Acknowledgments. We thank the anonymous referees for valuable suggestions that improved this paper.
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