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Abstract

A graph is square-complementary (squco, for short) if its square and complement
are isomorphic. We prove that there are no squco graphs with girth 6, that every
bipartite graph is an induced subgraph of a bipartite squco graph, that the problem
of recognizing squco graphs is graph isomorphism complete, and that no nontrivial
squco graph is both bipartite and planar. These results resolve three of the open
problems posed in Discrete Math. 327 (2014) 62–75.

Key words: graph equations, squco graphs, complement, square

1 Introduction

Given a graph G, the square of G is the graph denoted by G2 with the same
vertex set as G in which two distinct vertices are adjacent if and only if they
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are at distance at most two in G. Squares of graphs and their properties
are well-studied in literature (see, e.g., Section 10.6 in the monograph [7]).
A graph G is said to be square-complementary (squco for short) if its square
is isomorphic to its complement, that is, G2 ∼= G, or, equivalently, G ∼= G2.
Examples of squco graphs areK1, C7 (the 7-cycle), and a cubic vertex-transitive
bipartite squco graph on 12 vertices, known as the Franklin graph (see Fig. 1).
We say that a graph is a bipartite squco graph whenever it is both bipartite
and square-complementary.

Fig. 1. The Franklin graph.

The terminology “square-complementary” (“squco”) was suggested in [21],
however the problem of characterizing squco graphs is much older; it was
posed by Seymour Schuster at a conference in 1980 [25]. Since then, squco
graphs were studied in the context of graph equations, which may in general
involve a variety of operators including the line graph and complement, see,
e.g., [3, 5, 9–11, 23]. The entire set of solutions of some of these equations
was found (see for example [3] and references quoted therein). The set of
solutions of the equation G2 ∼= G remains unknown, despite several attempts
to describe it (see for example [5, 10, 21]). The problem of determining all
squco graphs was also posed as Open Problem No. 36 in Prisner’s book on
graph dynamics [23]. Note that if we consider graphs up to isomorphism, then
squco graphs are precisely the fixed points of the function φ defined on the
class of all finite graphs by the rule φ(G) = G2.

Every nontrivial squco graph has diameter 3 or 4 [10], but it is not
known whether a squco graph of diameter 4 actually exists. In [21], several
other questions regarding squco graphs were posed, and a summary of
known necessary conditions for squco graphs was given. Among them (see
Proposition 2.3), it was proved that the 7-cycle is the only squco graph of
girth at least 7. This result leaves only five possible values for the girth g
of a squco graph G, namely g ∈ {3, 4, 5, 6, 7}. The case g = 7 is completely
characterized by Proposition 2.3. Baltić et al. [5] and Capobianco and Kim [10]
asked whether there exists a squco graph of girth 3. An affirmative answer to
this question was provided in [21] by a squco graph on 41 vertices with a
triangle (namely, the circulant C41({4, 5, 8, 10})). As shown by the Franklin
graph, there also exists a squco graph of girth 4. The questions regarding the
existence of squco graphs of girth 5 or 6 were left as open questions in [21]. In
Section 3, we answer one of them, namely Open Problem 3 in [21], by proving
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that there is no squco graph of girth 6. This leaves g = 5 as the only possible
value of g for which the existence of a squco graph of girth g is unknown.

An important special case of the problem of characterizing squco graphs is the
case of bipartite graphs. In this case, the squco property is closely related to
the bipartite version of the property of being self-complementary. The bipartite
complement of a bipartite graph G with bipartition {A,B} is the graph Gbip

obtained from G by replacing E(G) by [A,B]\E(G), where [A,B] denotes the
set of all pairs consisting of a vertex in A and a vertex in B. A bipartite graph
G is said to be bipartite self-complementary if it is isomorphic to its bipartite
complement. Bipartite self-complementary graphs are extensively studied in
the literature, see, e.g., [1, 6, 15–19, 22, 24, 27]. Gangopadhyay and Hebbare
proved in [19] that every connected bipartite self-complementary graph with
at least two vertices has diameter at least 3 and at most 6. Note that every
bipartite graph G with diameter 3 satisfies G2 = G

bip. Thus, such a graph
is squco if and only if it is bipartite self-complementary. As the next result
shows, the connection between the two concepts is even stronger: except for
the one-vertex graph, the bipartite squco graphs are exactly the bipartite
self-complementary graphs with diameter 3.

Theorem 1.1 [21, Theorem 5.2] For a nontrivial bipartite graph G, the
following conditions are equivalent:

(1) G is squco.

(2) G is bipartite self-complementary and of diameter 3.

Theorem 1.1 also connects bipartite squco graphs with the concept of
self-antipodal graphs. Given a graph G, the antipodal graph A(G) is the graph
with vertex set V (G) in which two vertices are adjacent if and only if the
distance between them equals the diameter of G. The graph G is self-antipodal
if A(G) is isomorphic to G. Acharya and Acharya showed in [2] that a
nontrivial bipartite graph G is self-antipodal if and only if it is a bipartite
self-complementary graph with diameter 3.

Infinite families of bipartite self-complementary graphs with diameter 3 were
constructed in [19, Remark 2] and in [21, Theorem 5.7]. A further construction
will be given in Section 4. Using Theorem 1.1, each of these constructions leads
to an infinite family of bipartite squco graphs.

In Section 4 we also prove that every bipartite graph is an induced subgraph of
a bipartite squco graph. This implies that squco graphs can contain arbitrarily
long induced paths and cycles, thus solving in particular Open Problem 8(2) in
[21], asking whether squco graphs can contain arbitrarily long induced paths.
Furthermore, we show that the problem of recognizing squco graphs is graph
isomorphism complete, which solves Open Problem 10 in [21].

Our final result deals with the case of planar squco graphs. It is not difficult to
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see that every graph obtained from the 7-cycle by replacing one of its vertices
with a nonempty independent set is a planar squco graph. Thus, there exist
arbitrarily large planar squco graphs. This fact, together with the existence of
arbitrarily large bipartite squco graphs motivate the following questions: Are
there arbitrarily large squco graphs that are both bipartite and planar? If this
is not the case, what is the maximum order of a bipartite planar squco graph?
We answer these questions in Section 5, by proving that K1 is the only squco
graph that is both bipartite and planar.

2 Preliminaries

We use standard graph terminology [14]. We only consider finite, undirected,
simple graphs. We briefly recall some useful definitions. Given two vertices
u and v in a connected graph G, we denote by dG(u, v) the distance in G
between u and v (that is, the number of edges in a shortest u,v-path). The
eccentricity of a vertex u is the maximum distance from u to any vertex in the
graph. The radius and the diameter of G are defined as the minimum and the
maximum eccentricity of a vertex in G, respectively. For a positive integer i,
we denote by Ni(v,G) the set of all vertices u in G such that dG(u, v) = i, and
by N≥i(v,G) the set of all vertices u in G such that dG(u, v) ≥ i. The girth of
a graph G is defined as the shortest length of a cycle in G (∞ if G is acyclic).
A cut vertex in a connected graph G is a vertex whose removal disconnects
the graph. A graph G is bipartite if it has a bipartition, that is, a partition of
V (G) into two disjoint sets A and B such that every edge of G joins a vertex
in A with a vertex in B. Note that a connected bipartite graph has a unique
bipartition up to swapping the two parts.

A graph is planar if it can be drawn on the plane without crossings among
its edges; it is plane if it is already equipped with a fixed planar embedding.
The faces of a plane graph are the connected regions of the difference between
the plane and the image of the embedding. Let G be a connected plane graph
with n vertices, m edges, and f faces. Then, a consequence of Euler’s formula
n−m+ f = 2 is the inequality m ≤ 3n− 6, which strengthens to m ≤ 2n− 4
if G is bipartite.

For the reader’s convenience, we transcribe here the known results on squco
graphs that we shall need.

Proposition 2.1 [5] Every squco graph is connected and has no cut vertices.

Proposition 2.1 implies that the minimum degree of every nontrivial squco
graph is at least two.

Proposition 2.2 [5, 10] If G is a nontrivial squco graph, then we have rad(G) =
3 and 3 ≤ diam(G) ≤ 4 . Moreover, if G is regular, then diam(G) = 3.
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Proposition 2.3 [21, Proposition 3.6] If G is a nontrivial squco graph with
girth at least 7, then G is the 7-cycle.

Proposition 2.4 [21, Proposition 4.2] The only nontrivial squco graph with
maximum degree at most 2 is the 7-cycle.

A graph is subcubic if it has maximum degree at most 3.

Proposition 2.5 [21, Proposition 4.7] The only subcubic squco graph on 12
vertices is the Franklin graph (see Fig. 1).

Given a graph G with vertices labeled v1, v2, . . . , vn and positive integers
k1, k2, . . . , kn, we denote by G[k1, k2, . . . , kn] the graph obtained from G by
replacing each vertex vi of G with a set Ui of ki (new) vertices and joining
vertices ui ∈ Ui and uj ∈ Uj with an edge if and only if vi and vj are adjacent
in G.

Theorem 2.6 [21, Theorem 4.8] Let G be a graph with at most 11 vertices.
Then, G is squco if and only if G is one of the following eight graphs:
K1, C7, C7[2, 1, 1, 1, 1, 1, 1], C7[3, 1, 1, 1, 1, 1, 1], C7[4, 1, 1, 1, 1, 1, 1],

C7[1, 2, 1, 2, 2, 1, 1], C7[5, 1, 1, 1, 1, 1, 1], C7[2, 1, 1, 2, 1, 2, 2].

By Theorem 1.1, every bipartite squco graph has diameter at most 3. This
implies the following.

Lemma 2.7 [21, Lemma 5.1] Let G be a bipartite squco graph with bipartition
{A,B}. Then, every two vertices in A have a common neighbor (in B).

3 The girth of a squco graph is not 6

Theorem 3.1 There is no squco graph of girth 6.
Proof. Suppose for a contradiction that G is a squco graph of girth 6. First,
we observe that if x is a vertex of G, then there are no edges in any of the
sets Ni(x,G) for i = 1, 2 and that no two distinct vertices in N1(x,G) have a
common neighbor in N2(x,G). Let k = ∆(G) be the maximum degree of G
and let w be a vertex of degree k. By Proposition 2.4, the only squco graphs
with maximum degree at most 2 are K1 and C7; hence we have k ≥ 3.

We consider two cases.

Case 1. w has a neighbor of degree at least three.

Let v be a neighbor of w of degree at least three, and let p and q be two
neighbors of v other than w. If one of them, say p, is of degree at least 3, then
p has at least two neighbors in N2(v,G) and thus

∆(G2) ≥ |N1(q,G2)| ≥ |N1(w,G)\{v}|+|N1(p,G)\{v}| = (k−1)+2 = k+1 ,
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(see Fig. 2), contrary to the fact that G2 ∼= G.
w v

p q

N1(w,G) \ {v}

N1(p,G) \ {v}

Fig. 2. Neighborhood of w and v in G when p has degree at least 3.

Since Proposition 2.1 excludes the possibility of having degree 1 vertices, both
p and q are of degree 2. Thus, there exist unique vertices a and b contained in
N1(p,G)\{v} and in N1(q,G)\{v}, respectively. Since G has girth 6, vertices a
and b are distinct, nonadjacent to each other, and nonadjacent to w. Clearly,
they both belong to N2(v,G). The set N3(v,G) is nonempty, because the
radius of G is 3 by Proposition 2.2. Vertices a and b must be adjacent to all
vertices in N3(v,G), otherwise, if, say, vertex a is nonadjacent to a vertex
x ∈ N3(v,G), then

∆(G2) ≥ |N1(p,G2)| ≥ |N1(w,G) \ {v}|+ |{b, x}| ≥ k + 1 ,

contrary to the fact that G2 ∼= G. To avoid a 4-cycle in G, we conclude that
|N3(v,G)| = 1. But now, the degree of v in G2 is 1, which implies that G2 has
a cut vertex, contrary to the fact that G is squco and Proposition 2.1.

Case 2. All neighbors of w are of degree at most two.

In this case, all neighbors of w are of degree exactly two. In particular,
|N2(w,G)| = |N1(w,G)| = k ≥ 3. Now we will show that every vertex x from
N2(w,G) is of degree at least |N3(w,G)|. Let x ∈ N2(w,G). Since G is of girth
more than 4, vertex x has a unique neighbor y in N1(w,G). Vertex x has at
least |N3(w,G)|−1 neighbors in N3(w,G), since otherwise |N1(y,G2)| ≥ k+1.
This implies that any two vertices from N2(w,G) (the size of N2(w,G) is at
least 3) have at least |N3(w,G)| − 2 common neighbors in N3(w,G). This
bounds |N3(w,G)| ≤ 3, otherwise we would have a 4-cycle.

Also we have that N4(w,G) = ∅ since, otherwise, for any z ∈ N4(w,G) we
would have |N1(z,G2)| ≥ k+ 1 > ∆(G) = ∆(G2), which is a contradiction. It
follows that

|V (G)| = |{w} ∪N1(w,G) ∪N2(w,G) ∪N3(w,G)| = 1 + 2k + |N3(w,G)| .

Suppose |N3(w,G)| = 3. Then, each vertex in N2(w,G) is adjacent to at
least two vertices in N3(w,G). Since |N2(w,G)| = k ≥ 3 and no two
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vertices in N2(w,G) have two common neighbors in N3(w,G), we infer that
each vertex in N2(w,G) is adjacent to exactly two vertices in N3(w,G). If
|N2(w,G)| ≥ 4, then there exist two distinct vertices in N2(w,G) with the
same neighborhood in N3(w,G), leading to a 4-cycle in G, a contradiction.
We thus have |N1(w,G)| = |N2(w,G)| = k = 3 and |N≥4(w,G)| = 0. This
implies that our graph has exactly ten vertices. All squco graphs with at most
11 vertices are listed in Theorem 2.6 and none of them has girth 6. Hence this
is a contradiction with G having girth 6.

Suppose |N3(w,G)| = 2. If k ≤ 4, then our graph has no more than 11 vertices,
which is not possible. Hence k ≥ 5. There must be at least 2k − 1 vertices of
degree two in G (all k vertices in N1(w,G); at most one of the k vertices in
N2(w,G) has both vertices from N3(w,G) for neighbors, otherwise we have
a 4-cycle as before). In G2 at most k + 3 of them are of degree two, because
every vertex in N1(w,G) will be connected to all but one vertex in N2(w,G)
in G2, which is a contradiction, because k ≥ 5.

The last possibility is that |N3(w,G)| = 1, but then w would be of degree 1
in G2, again a contradiction. This completes the proof. 2

4 A bipartite construction for squco graphs

Given two vertex-disjoint bipartite graphs G and G′ with respective
bipartitions {A,B} and {A′, B′}, construct a bipartite graph H = H(G,G′)
with vertex set V (G) ∪ V (G′) ∪ C ∪D, where C = {c1, c2} and D = {d1, d2}
are sets of two new vertices each, and edge set E(G) ∪E(G′) ∪ {c1d1, c2d2} ∪
[A,D] ∪ [A′, B] ∪ [C,B′] (recall that [A,D] = {ad : a ∈ A, d ∈ D} and so on).
See Fig. 3 for an illustration.

Note that the Franklin graph (see Fig. 1) is the result of this construction
when each of G and G′ is isomorphic to the graph consisting of two disjoint
copies of K2.

We say that a bipartite graph G is nice if neither of the two parts of G is
empty and every vertex has a neighbor both in G and in Gbip.

Lemma 4.1 Given a nice bipartite graph G, the bipartite graph H(G,Gbip) is
squco.
Proof. Let G′ be a disjoint copy of Gbip. Let {A,B} be a bipartition of G,
and let {A′, B′} be the corresponding bipartition of G′, in the sense that A′ is
a disjoint copy of A and B′ is a disjoint copy of B.

Since G′ ∼= G
bip, the graph H = H(G,G′) is bipartite self-complementary: the

required isomorphism, viewed as a permutation of V (H), leaves the subsets C
and D fixed and exchanges A with A′ and B with B′.
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A B

B′A′

G

G′

G

G′

C

H(G,G′)

A B

B′A′

D
c1

c2

d1

d2

Fig. 3. The construction of H(G, G′). A thick edge between two sets of vertices
denotes the presence of all possible edges.

Since A,A′, B,B′ 6= ∅ and none of these sets contain isolated vertices in G or
G′, it is easy to check that H(G,G′) has diameter 3. It follows by Theorem 1.1
that H = H(G,G′) is a bipartite squco graph. 2

Observe that every bipartite graph is an induced subgraph of some nice
bipartite graph. A simple construction establishing this is shown in Fig. 4.

A B

G

G′

G

C D
c1

c2

d1

d2

A B

Fig. 4. A general transformation showing that every bipartite graph G is an induced
subgraph of some nice bipartite graph G′. A thick edge between two sets of vertices
denotes the presence of all possible edges.

Therefore, we have the following result as an immediate corollary of Lemma 4.1.

Theorem 4.2 Every bipartite graph is an induced subgraph of a bipartite
squco graph. In particular, there are squco graphs containing arbitrarily long
induced paths and cycles.

The bipartite construction mapping G and G′ to H(G,G′) is also instrumental
in the proof of the following result.
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Theorem 4.3 The problem of recognizing squco graphs is graph isomorphism
complete.
Proof. Given a graph G, consider I(G), the vertex-edge bipartite incidence
graph of G, that is, the left part of I(G) is A = V (G), the right part is
B = E(G), and x ∈ A = V (G) is adjacent in I(G) to e ∈ B = E(G), if and
only if x is incident to e in G. Clearly G1 ∼= G2 if and only if I(G1) ∼= I(G2).
Without loss of generality we can consider only graphs G satisfying

(1) m = |E(G)| > |V (G)| = n > 1, and

(2) I(G) and I(G)bip do not have isolated vertices.

This is so because G1 ∼= G2 if and only if G1∗K2 ∼= G2∗K2, and because G∗K2
always satisfies conditions (1) and (2) (we denote by G∗K2 the result of adding
two universal vertices to G). Also, it suffices to consider only pairs of graphs
G1, G2 having |V (G1)| = |V (G2)| and |E(G1)| = |E(G2)|, since otherwise the
fact that G1 and G2 are not isomorphic can be detected in linear time.

Now let G1, G2 be two such graphs, and I1 := I(G1) and I2 := I(G2)bip. In
the rest of the proof, we show that G1 ∼= G2 if and only if H(I1, I2) is squco.

If G1 ∼= G2, then H(I1, I2) is squco because of Lemma 4.1.

Suppose now that H(I1, I2) is squco. We shall show that the required
isomorphism, seen as a permutation of the vertex set of H(I1, I2), exchanges
V (I1) and V (I2) in the expected way: A = V (G1) with A′ = V (G2) and
B = E(G1) with B′ = E(G2). This will imply that I(G1) ∼= I(G2) and thus
G1 ∼= G2.

First, observe that the left part of H(I1, I2) has 2n+ 2 vertices and the right
part contains 2m + 2 vertices. Since we assumed m > n, it follows that any
isomorphism must preserve each of the two parts. Next, observe that the
degrees of the vertices in the right part determine the subset to which they
belong: vertices in B have degree n + 2, vertices in B′ have degree n, and
vertices in subset D have degree n + 1. Furthermore, also the subsets A, A′,
and C are uniquely determined as the subsets of vertices on the left part that
have 2, 0, and 1 neighbor in D, respectively.

It follows that the required isomorphism between H(I1, I2) and
H(I1, I2)2 = H(I1, I2)bip must exchange V (I1) and V (I2) in the expected way
and the result follows. 2

5 There are no nontrivial planar bipartite squco graphs

First we reduce the problem to a finite number of cases. To this end, the
following property of bipartite squco graphs will be useful.
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Lemma 5.1 Every nontrivial bipartite squco graph has minimum degree at
least three, and each of its parts has at least six vertices.
Proof. Let G be a nontrivial bipartite squco graph with bipartition {A,B}.
By Proposition 2.1, G is connected and of minimum degree at least 2. Suppose
that there is a vertex x1 ∈ V (G) of degree 2, say NG(x1) = {y1, y2}. By
symmetry, we may assume that x1 ∈ A (and then y1, y2 ∈ B). The fact that
G is bipartite and squco implies by Theorem 1.1 that G ∼= G

bip. Thus, by
Lemma 2.7, there is a vertex x2 ∈ A adjacent to both y1, y2 in Gbip. But then
x1 and x2 cannot have a common neighbor in B (in G), contrary to Lemma 2.7.
It follows that every vertex in G has degree at least 3. Then, every vertex
must also have degree at least 3 in Gbip. Hence |NG(x) ∪N

G
bip(x)| ≥ 6 for all

x ∈ A ∪B, and each part must have at least 6 vertices. 2

Theorem 5.2 If a nontrivial, planar bipartite squco graph G exists, it has a
bipartition {A,B} with 6 = |A| ≤ |B| ≤ 8.
Proof. Let G be a planar bipartite squco graph on n vertices and m edges,
where n > 1, with bipartition {A,B} such that |A| ≤ |B|. Let a = |A| and b =
|B|. By Proposition 2.1 and Lemma 5.1,G is connected and of minimum degree
at least 3, and a ≥ 6. The fact that G is bipartite self-complementary implies
that |E(Gbip)| = |E(G)| and consequently m = ab/2. By Euler’s formula for
planar bipartite graphs, we have that m ≤ 2n − 4, and hence, we get that
ab ≤ 4n− 8 = 4(a+ b)− 8. This yields

(a− 4)(b− 4) ≤ 8 . (1)

Since 6 ≤ a ≤ b, we thus have (a− 4)2 ≤ 8, which implies a ≤ 6. Thus, a = 6
and by (1), we have 6 ≤ b ≤ 8, as claimed. 2

The previous theorem reduces the problem of the existence of nontrivial planar
bipartite squco graphs to a finite number of cases manageable by a computer.
To finally prove that there are none, we can apply two possible approaches.

One approach is a traditional human-readable proof, a case by case analysis,
which we did in a previous preprint version of this paper available in [13]. The
full proof is four pages long.

The other approach is a computer-assisted proof, which we also did, twice
(in our opinion, computer-assisted proofs benefit from redundancy). First we
produced an exhaustive DFS (backtracking) algorithm with automorphism
reductions (pruning) using GAP with YAGS [12, 20]. This way we generated
up to isomorphism, all bipartite graphs with minimum degree at least 3, whose
bipartite complements also have minimum degree at least 3, and with parts of
orders given by 6+6, 6+7, and 6+8 vertices respectively. Checking these graphs
for the square-complementary property, we found a total of 1 + 3 + 11 = 15
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bipartite squco graphs. We then checked that none of them is planar (all of
them contain a subdivision of K3,3). The code is available upon request.

Second, we also used plantri [8] to generate all the relevant planar bipartite
graphs, namely those that are 2-connected, with minimum degree at least 3,
and having orders and sizes given by: 12 and 18, 13 and 21, and 14 and 24,
respectively; a total of 1 + 2 + 12 = 15 graphs. We then checked that none of
them is squco, again using GAP and YAGS.

Whatever your preferred approach, we can now claim the following theorem.

Theorem 5.3 The only planar bipartite squco graph is K1.

6 Conclusion

The results of the present paper provide further insight on the solution set
of the graph equation G2 ∼= G. We showed that, while no solutions can be
found among graphs of girth six or among nontrivial planar bipartite graphs,
recognizing square-complementary graphs is in general as difficult as the
Graph Isomorphism problem. This is a notorious problem that is not known
to be either in P or NP-complete, and for which Babai recently announced a
quasipolynomial-time algorithm [4].

While our work answers three of the open problems on squco graphs posed
in [21], several problems on squco graphs mentioned therein remain open. This
includes existence of squco graphs within the classes of graphs of girth five,
graphs of diameter four, and nontrivial chordal graphs. Furthermore, the proof
of Theorem 4.3 shows that the problem of recognizing squco graphs is graph
isomorphism complete within the class of bipartite graphs. This motivates the
study of the problem of recognizing squco graphs within subclasses of bipartite
graphs for which the graph isomorphism problem is GI-complete. This is the
case, for example, for the class of chordal bipartite graphs [26].

Acknowledgments. The authors would like to thank the anonymous
reviewers for their insightful comments and suggestions, which led to an
improved presentation. This work is supported in part by the Slovenian
Research Agency (I0-0035, research program P1-0285 and research projects
J1-9110, N1-0102) and by SEP-CONACYT, grant A1-S-45528.

References

[1] B. D. Acharya. There are exactly seven graphs whose subdivision graphs
are bipartite self-complementary, Nat. Acad. Sci. Lett. 11 (1988) 153–154.

11



[2] B. D. Acharya and M. Acharya, On self-antipodal graphs, Nat. Acad. Sci.
Lett. 8 (1985) 151–153.

[3] J. Akiyama, H. Era and G. Exoo. Further results on graph equations for
line graphs and nth power graphs. Discrete Math. 34 (1981) 209–218.

[4] L. Babai Graph Isomorphism in Quasipolynomial Time
[extended abstract]. In STOC’16—Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing
(STOC ’16), 684–697, ACM, New York, 2016. See also
http://people.cs.uchicago.edu/~laci/update.html

[5] V. Baltić, S. Simić and V. Tintor. Some remarks on graph equation
G2 = G. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 5 (1994)
43–48 (1995).

[6] N. S. Bhave and T. T. Raghunathan. Enumeration of bipartite
self-complementary graphs. Indian J. Pure Appl. Math. 28 (1997)
1451–1459.

[7] A. Brandstädt, V.B. Le and J.P. Spinrad. Graph classes: a survey.
SIAM Monographs on Discrete Mathematics and Applications. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[8] G. Brinkmann and B. McKay. plantri, a program
that generates planar graphs, Version 5.0, 2018.
(https://users.cecs.anu.edu.au/~bdm/plantri/).

[9] M. Capobianco, M. Karasinski and M. Randazzo. On some quadratic
graph equations, in Proceedings of the thirteenth Southeastern conference
on combinatorics, graph theory and computing (Boca Raton, Fla.,
1982). In Proceedings of the thirteenth Southeastern conference on
combinatorics, graph theory and computing (Boca Raton, Fla., 1982),
volume 35, pages 149–156, 1982.

[10] M. Capobianco and S.R. Kim. More results on the graph equation G2 =
G. In Graph theory, combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo,
MI, 1992), Wiley-Intersci. Publ., pages 617–628. Wiley, New York, 1995.

[11] M.F. Capobianco, K. Losi and B. Riley. G2 = G has no nontrivial
tree solutions. In Combinatorial Mathematics: Proceedings of the Third
International Conference (New York, 1985), volume 555 of Ann. New
York Acad. Sci., pages 103–105. New York Acad. Sci., New York, 1989.

[12] C. Cedillo, R. MacKinney-Romero, M.A. Pizaña, I.A. Robles and R.
Villarroel-Flores. YAGS - Yet Another Graph System, Version 0.0.5,
(2019). (http://xamanek.izt.uam.mx/yags/).

[13] R. Darda, M. Milanič and M. Pizaña. Searching for square-complementary
graphs: non-existence results and complexity of recognition,
preprint version 1, (2018) arXiv:1808.01313v1 [math.CO]
(https://arxiv.org/abs/1808.01313v1).

[14] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer, Heidelberg, fourth edition, 2010.

[15] A. Farrugia Self-Complementary Graphs and Generalisations: a
Comprehensive Reference Manual. M.Sc. thesis, University of Malta

12



(1999).
[16] T. Gangopadhyay. Characterisation of forcibly bipartite

self-complementary bipartitioned sequences. Combinatorics and graph
theory (Calcutta, 1980), pp. 237–260, Lecture Notes in Math., 885,
Springer, Berlin-New York, 1981.

[17] T. Gangopadhyay. Characterisation of potentially bipartite
self-complementary bipartitioned sequences. Discrete Math. 33 (1982)
173–184.

[18] T. Gangopadhyay. Studies in multipartite self-complementary graphs.
Ph.D. Thesis, I.S.I. Calcutta (1980).

[19] T. Gangopadhyay and S. P. Rao Hebbare. r-partite self-complementary
graphs–diameters. Discrete Math. 32 (1980) 245–255.

[20] The GAP Group. GAP – Groups, Algorithms, and Programming, Version
4.10, (2019). (http://www.gap-system.org).

[21] M. Milanič, A.S. Pedersen, D. Pellicer and G. Verret. Graphs whose
complement and square are isomorphic. Discrete Math. 327 (2014) 62 –
75.

[22] R. Molina. On the structure of self-complementary graphs.
Proceedings of the Twenty-fifth Southeastern International Conference on
Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994).
Congr. Numer. 102 (1994) 155–159.

[23] E. Prisner. Graph dynamics, volume 338 of Pitman Research Notes in
Mathematics Series. Longman, Harlow, 1995.

[24] S. J. Quinn. Factorisation of complete bipartite graphs into two
isomorphic subgraphs, Combinatorial mathematics, VI (Proc. Sixth
Austral. Conf., Univ. New England, Armidale, 1978), pp. 98–111, Lecture
Notes in Math., 748, Springer, Berlin, 1979.

[25] S. Schuster. Problem 10. In Theory and Applications of Graphs (Proc. of
the Fourth Inter. Conf. on the Graph Theory and Applications of Graphs),
Eds. G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster, D.R.
Lick), page 611. John Wiley Sons, New York - Chichester - Brisbane -
Toronto - Singapore, 1981.

[26] R. Uehara, S. Toda, T. Nagoya. Graph isomorphism completeness for
chordal bipartite graphs and strongly chordal graphs. Discrete Applied
Math. 145 (2005) 479–482.

[27] M. Ueno and S. Tazawa. Enumeration of bipartite self-complementary
graphs. Graphs Combin. 30 (2014) 471–477.

13


	Introduction
	Preliminaries
	The girth of a squco graph is not 6
	A bipartite construction for squco graphs
	There are no nontrivial planar bipartite squco graphs
	Conclusion

