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CLIQUE-DIVERGENCE IS NOT FIRST-ORDER EXPRESSIBLE
FOR THE CLASS OF FINITE GRAPHS

C. CEDILLO1,3,4,5 AND M.A. PIZAÑA2,3

Abstract. The clique graph, K(G), of a graph G is the intersection graph
of its (maximal) cliques. The iterated clique graphs of G are then defined by:
K0
(G) = G and Kn

(G) = K(Kn−1
(G)). We say that G is clique-divergent if

the set of orders of its iterated clique graphs, {∣Kn
(G)∣ ∶ n ∈ N} is unbounded.

Clique graphs and iterated clique graphs have been studied extensively, but
no characterization for clique-divergence has been found so far.

Recently, it was proved that the clique-divergence is undecidable for the
class of (not necessarily finite) automatic graphs [2], which implies that clique-
divergence is not first-order expressible for the same class.

Here we strengthened the latter result by proving that the clique-divergence
property is not first-order expressible even for the class of finite graphs. Logic
expressibility has strong relations with complexity theory and consequently,
new avenues of research are opened for clique graph theory.

1. Introduction

Our graphs are finite and simple. Let G be the class of all graphs. In graph
dynamics [15] we are interested in the properties of the discrete dynamic system
resulting from a given operator Φ ∶ G → G. This setting has applications in certain
approaches to loop quantum gravity [16–18] where the quantum spacetime foam is
to be obtained as an emergent property from the (hypothetical) underlying discrete
spacetime.

Given a graph operator Φ, we can define the corresponding iterated graph oper-
ators by Φ0

(G) = G and Φn
(G) = Φ(Φn−1

(G)). One of the central topics of study
in graph dynamics is that of Φ-divergence: A graph G is said to be Φ-divergent,
if the sequence of orders ∣Φn

(G)∣n∈N grows without limit; otherwise, we say that
G is Φ-convergent (in which case, we necessarily have that Φn

(G) ≅ Φm
(G), for

some n < m). Φ-divergence have been fully characterized for many graphs opera-
tors, including the characterization of convergence for iterated line graphs [14], the
characterization for iterated biclique graphs [6] among others [15].

The clique operator, K, however is widely considered one of the most complex
ones [15] and a characterization of K-divergence (or clique-divergence) has resisted
all attempts during the 50 years since the notion of iterated clique graphs was
introduced in [7]. A growing consensus among experts is that clique-convergence
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might be undecidable although no substantial progress has been made in this di-
rection either. Hence, other measures of difficulty have been pursued: Recently [2],
it was shown that clique-divergence is undecidable for the class of (not necessarily
finite) automatic graphs, and consequently, that clique-divergence is not first order
expressible for the same class.

Here we extend the latter result by proving that clique-divergence is not first-
order expressible even for the class of finite graphs. Logic expressibility has many
known relations to complexity theory [8, 13] and hence new approaches to under-
stand the difficulty of deciding clique-divergence are opened.

2. Preliminaries

We refer the reader to the standard literature for logic [3], finite model theory
[13], graphs [1] and clique graphs [20]. In what follows, we briefly review some of
the needed terminology and results.

Given a graph G and x, y ∈ V (G), A,B ⊆ V (G), the distance from x to y
in G is denoted by dG(x, y); we also use dG(x,A) = min{dG(x, y) ∶ y ∈ A} and
dG(A,B) = min{dG(x, y) ∶ x ∈ A,y ∈ B}. The closed neighborhood of a vertex x
in a graph G is denoted by NG[x] or N[x]. A vertex x is dominated by y ≠ x
whenever N[x] ⊆ N[y]. A graph G is dismantleable to H if H can be obtained
from G by removing dominated vertices iteratively, for instance, an n-path graph
is dismantleable to the one-vertex graph. A clique of G, is a maximal complete
subgraph G. The clique graph, K(G), of a graph G is the intersection graph of all its
cliques. Here,K is the clique operator. Iterated clique graphs are defined inductively
by: K0

(G) = G and Kn+1
(G) =K(Kn

(G)). A graph G is K-convergent (or clique-
convergent) if Kn

(G) ≅ Km
(G) for some n < m; otherwise it is K-divergent (or

clique-divergent).

Theorem 2.1. [5, Thm. 5] If G is dismantleable to H, G and H have the same
K-behavior. In particular, if x is a dominated vertex of G, G and G−{x} have the
same K-behavior.

We shall need the following two families of graphs (see figures 1(a) and 1(b)):

Definition 2.2. Let m ≥ 2. The graph Xm has vertex set V (Xm) = Z6m and
adjacencies given by: x ∼ y whenever x ≡ 1 mod 3 and y −x ∈ {1,3}, or when x ≢ 1
mod 3 and y − x ∈ {1,2,3} (or when y ∼ x according to the preceding rules). The
graph Ym is obtained from Xm by removing exactly one edge: {6m−1,2} ∈ E(Xm).

The graphs just defined belong to the class of clockwork graphs. The clique
behavior of clockwork graphs is very well understood [4, 10, 11] and there is even
a polynomial time algorithm for deciding it [12]. We shall need to know the clique
behavior of Xm and Ym:

Remark 2.3. For all m ≥ 2, Xm is K-convergent and Ym is K-divergent.

Proof. In the terminology of [12], Xm and Ym are both clockwork graphs with
no covered vertices and with zero and one good segments respectively. It follows
by the algorithm described in [12, Thm 3.6] that ∣Kn

(Xm)∣ = ∣Xm∣ + 0 ⋅ n = 6m
and that ∣Kn

(Ym)∣ = ∣Ym∣ + 1 ⋅ n = 6m + n. Hence Xm is K-convergent and Ym is
K-divergent. �
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In fact, Xm and Ym are very simple cases of clockwork graphs and the interested
reader, would find it not too difficult to produce a stand-alone proof of the previous
remark. Indeed, it can be readily verified that Xm is self-clique (K(Xm) ≅Xm) and
with some extra effort, that Kn

(Ym) is always an induced subgraph of Kn+1
(Ym),

with the latter having exactly one extra vertex.
In model theory, a (relational) signature σ is a tuple of relational symbols

(R1,R2, . . . ,Rs), where each Ri has some associated arity ri ∈ N. Given a sig-
nature σ, a σ-structure (also called a model) is a tuple A = (A,RA

1 ,R
A
2 , . . . ,R

A
s )

consisting of a domain A and for each symbol Ri in σ, an ri-ary relation RA
i ⊆ Ari .

The first order logic (FO) sentences are then the sentences we can form using these
relational symbols, together with the logic symbols (∃, ∀, =, ¬, ∨, ∧), variables
(x, y, x1, x2, . . . ) and parenthesis. It is important to note that, in this context,
quantifiers refer always exclusively to the domain A.

In the case of graph theory, the signature is usually simply σ = (∼) where ’∼’
is the symbol for the adjacency relation. Then a σ-structure is simply a graph
A = (V,E), with E ⊆ V 2 (an unoriented edge x ∼ y is represented here by the
collection of both ordered pairs {(x, y), (y, x)} ⊆ E, as it is common practice in the
literature). We shall use the standard LATEX typeface “mathnormal” (A,B, . . .) for
denoting graphs unless the result being considered is more model-theoretic than
graph-theoretic in which case, we shall use the fraktur typeface (A, B, . . . ).

Given a pair of graphs A, B, and an integer k ∈ N, a k-round Ehrenfeucht-Fraïssé
game [13, 19] on A and B is played by two players Duplicator and Spoiler : At each
round, Spoiler first selects a vertex x either in A or in B (his choice) and Duplicator
replies by selecting some vertex y on the other graph. The winner is determined as
follows: after k-rounds, some vertices a1, a2, . . . , ak are selected in A and some other
vertices b1, b2, . . . , bk are selected in B (the subscript indicate the round in which
the vertex was selected, repetitions of vertices are allowed, at this point it does not
matter which player selected which vertex), then Duplicator wins the game when
the mapping given by ai ↦ bi is an isomorphism from the subgraph of A induced by
{a1, a2, . . . , ak} to the subgraph of B induced by {b1, b2, . . . , bk}; otherwise, Spoiler
wins the game. We say that Duplicator has a k-round winning strategy if there
is a way in which Duplicator can play to guarantee the victory after k rounds, no
matter how Spoiler plays.

Theorem 2.4. (Ehrenfeucht-Fraïssé, [13, Cor. 3.10]) A property P of finite σ-
structures is not expressible in FO if for every k ∈ N, there exist two finite σ-
structures, Ak and Bk, such that:

(1) Duplicator has a k-round winning strategy for the Ehrenfeucht-Fraïssé game
on Ak and Bk.

(2) Ak has property P , and Bk does not.

3. Cliques and games

Look at the graphs in Figure 1, (c) and (d), they are not isomorphic, but there
are a pair of vertex bijections which are almost isomorphisms: a simple translation
works well except in the red regions, while a reflection (followed by a translation)
works well except in the green regions. This is the notion we want to capture with
the definitions of quasi-isomorphisms and quasi-isomorphic graphs in the following
paragraphs.
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Given two graphs A, B a quasi-isomorphism is a bijection f ∶ V (A) → V (B)

together with two failure regions X ⊆ V (A) and X ′
⊆ V (B) such that whenever f

fails to be an isomorphism at a pair of vertices x, y ( i.e. when x ∼ y and f(x) /∼ f(y)
or when x /∼ y and f(x) ∼ f(y) ), we have that x, y ∈X and f(x), f(y) ∈X ′.

A pair of graphs A, B are quasi-isomorphic with failure distance s if there are
two quasi-isomorphisms r ∶ V (A) → V (B) with failure regions G and G′ and g ∶
V (A) → V (B) with failure regions R and R′ such that r(G) = G′

= g(G) and
r(R) = R′

= g(R) and such that dA(R,G) = s.
Note that, since any minimal length path from R to G (resp. R′ to G′) does not

use edges contained in G (resp. G′), and since r is an isomorphism save for the
edges contained in G and G′, we must have dB(R′,G′

) = dA(R,G).

Theorem 3.1. If A and B are quasi-isomorphic graphs with failure distance greater
than 2k, then Duplicator has a k-round winning strategy for the Ehrenfeucht-Fraïssé
game on A and B.

Proof. Assume that the bijections and failure regions are r, g, G, G′, R and R′ as
above. We describe Duplicator’s strategy recursively:

At each round i with 1 ≤ i ≤ k, there will be red and green regions Ri,Gi ⊆ V (A)

and R′
i,G

′
i ⊆ V (B) of previously selected vertices (initially set R1 = R, R′

1 = R′,
G1 = G, G′

1 = G′). Assume first that Spoiler selects a vertex x ∈ A. The idea is
that Duplicator replies with r(x) or g(x) according to whether x is closer to the
red region Ri or it is closer to green region Gi, that is, Duplicator selects a vertex
dup(x) ∈B according to the following rule:

dup(x) = {
r(x) if dA(x,Ri) ≤ dA(x,Gi),
g(x) if dA(x,Ri) > dA(x,Gi).

After that, we compute the new red and green regions as follows: if dup(x) = r(x)
then set Ri+1 = Ri ∪ {x}, R′

i+1 = R
′
i ∪ {r(x)}, Gi+1 = Gi and G′

i+1 = G
′
i; else (when

dup(x) = g(x)) set Gi+1 = Gi ∪ {x}, G′
i+1 = G

′
i ∪ {g(x)}, Ri+1 = Ri, R′

i+1 = R
′
i.

If Spoiler selected x ∈ B instead, Duplicator replies analogously with r−1(x)
or g−1(x) according to whether x is closer to R′

i or G′
i; the new sets Ri+1 R′

i+1,
Gi+1, G′

i+1 are also computed analogously in this case: if dup(x) = r−1(x) then
set Ri+1 = Ri ∪ {r−1(x)}, R′

i+1 = R′
i ∪ {x}, Gi+1 = Gi and G′

i+1 = G′
i; else (when

dup(x) = g−1(x)) set Gi+1 = Gi ∪ {g−1(x)}, G′
i+1 = G

′
i ∪ {x}, Ri+1 = Ri, R′

i+1 = R
′
i.

We claim that for 1 ≤ i ≤ k + 1, dA(Ri,Gi) = dB(R′
i,G

′
i) > 2k−i+1: Indeed for

i = 1 we have dA(R1,G1) > 2k by hypothesis, and dB(R′
1,G

′
1) = dA(R1,G1) as

noted before. For the induction step, let us assume first that x ∈ A is closer to
the red region Ri, then 2k−i+1 < dA(Ri,Gi) ≤ dA(Ri, x) + dA(x,Gi) ≤ 2dA(x,Gi).
It follows that dA(x,Gi) > 2k−i = 2k−(i+1)+1. Now, observe that dA(Ri+1,Gi+1) =

min{dA(Ri,Gi), dA(x,Gi)} > 2k−(i+1)+1. Also, we must have that dB(R′
i+1,G

′
i+1) =

dA(Ri+1,Gi+1) since any minimal length path from the red to the green region
does not use edges from within those regions and since r ∶ V (A) → V (B) is an
isomorphism outside those regions, hence, r maps minimal length paths fromRi+1 to
Gi+1 onto minimal length paths from R′

i+1 to G′
i+1. It follows that dB(R′

i+1,G
′
i+1) =

dA(Ri+1,Gi+1) > 2k−(i+1)+1 in this case. The other three cases are analogous. This
concludes the proof of the claim.

Now, the described strategy is a k−round winning strategy for Duplicator since,
after the k-th round, we have dA(Rk+1,Gk+1) = dB(R′

k+1,G
′
k+1) > 2k−(k+1)+1 = 1,

which means that the red and the green regions never get in touch (i.e. distance
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at least 2) and hence there is an isomorphism from the subgraph of A induced by
the selected vertices to the subgraph of B induced by the selected vertices: namely
the isomorphism that acts as r on the red region Rk+1 and acts as g on the green
region Gk+1. �

We define now the graphs Am and Bm (see Figure 1 (c) and (d)). To con-
struct Am take a copy of Xm and a copy of Ym, rename the vertices of Xm as
0,1, . . . ,6m − 1, now identify the vertex 0 ∈ Xm and the vertex 0 ∈ Ym, finally, re-
move the edges connecting the set {3m − 1,3m,3m + 1} to the set {3m + 2,3m +

3,3m + 4}, the resulting graph is Am. Now Bm is obtained from Am by removing
the edge {2,6m − 1} and adding the edge {2,6m − 1}.

Theorem 3.2. Clique-divergence is not first-order expressible.

Proof. Define Ak = A2k+2 and Bk = B2k+2. Observe that the failure distance is
greater than 2k in both graphs: for k = 1 (m = 4) we can readily see that in figures
1(c) and 1(d), and whenever m increases by 1, the gap distance also increases by 1.
It follows by Theorem 3.1 that Duplicator has a k-round winning strategy for the
Ehrenfeucht-Fraïssé game on Ak and Bk.

Also, observe that Am dismantles to Xm and that Bm dismantles to Ym: For
instance, in Figure 1(c), the vertices 12 and 13 of A4 are dominated by the vertex
11; also the vertex 14 is dominated by vertex 15. After removing vertices 12, 13
and 14, the vertices 11, 15 and 16 become dominated. Clearly the process can be
continued until only a copy of X4 remains, and clearly this can be done for all m.
Similar considerations apply to Bm. It follows by Theorem 2.1 and Remark 2.3
that every Am is clique-convergent and every Bm is clique-divergent.

The result now follows from Theorem 2.4. �

Some open problems immediately arise: Is clique-divergence second-order (SO)
expressible? If it is, is it also expressible in some known fragment of second-order
logic (monadic-SO, FSO [2, 9], etc.)? Is clique-divergence NP-hard? Is clique-
divergence computable [2, 12]?

We remark that the given families of graphs Am and Bm can be easily differen-
tiated using monadic second order logic.

Acknowledgment We thank the anonymous referee for finding some typos in
a previous version of this paper.
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