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On 4-regular square-complementary
graphs of large girth

Ariadna Juárez-Valencia, Miguel Pizaña

Abstract1

A square-complementary (squco) graph is a graph such that its2

square and its complement are isomorphic. Here, we provide two3

computer-assisted proofs showing that there are no 4-regular squco4

graphs of girth greater than 4, thus solving in the negative an open5

problem in M. Milanič, A.S. Pedersen, D. Pellicer and G. Verret6

[Discrete Mathematics 327 (2014) 62-75].7

1 Introduction8

All our graphs are finite and simple. The square G2 of a graph G is the9

graph with the same vertex set as G and where two vertices are adjacent if10

and only if they are at distance 1 or 2 in G. The complement G of G is the11

graph with the same vertex set as G, and where two vertices are adjacent12

if and only if they are not adjacent in G. A square-complementary graph13

(squco for short), is a graph satisfying G2 ∼= G, or equivalently, G2 ∼= G.14

Note that two vertices are adjacent in G2 if and only if they are at distance15

at least 3 in G. The order of a graph G is denoted by |G|.16
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(a) (b) (c) (d)

Figure 1: Some squco graphs.

Squco graphs where introduced by Akiyama et al. in [1] and also (as17

reported in [2]) independently by Schuster in [14], the term “squco” was18

introduced by Milanič et al. in [12]. In the context of graph equations,19

several authors have dealt with the topic including [13, 6, 4, 5, 2, 1, 8].20

Examples of squco graphs include the trivial graph K1, the 7-cycle C7,21

(see Figure 1(a)) and the Franklin graph (see Figure 1(c)) [1]. There is at22

least one squco graph for every order n ≥ 7 [1].23

Almost all known squco graphs are either d-regular for some d (all the24

vertices have degree d) or contain some non-trivial d-regular squco induced25

subgraph (the only known exception is the graph in [12, Figure 3]). Indeed,26

Baltić et al. [2, Lemma 2.1] and later Milanič et al. [12, Proposition 2.5]27

presented separate procedures to extend squco graphs and the resulting28

squco extensions may be non-regular (for example, in Figure 1, (b) and29

(d) are extensions of (a) and (c) respectively). Also, the construction in30

[8, Theorem 4.1] always produce bipartite squco graphs containing the31

Franklin graph, which is 3-regular. Therefore the d-regular case is very32

prominent here.33

A d-regular squco graph G must have at most d2 + d + 1 vertices [2]34

(see Figure 2): pick any vertex x, it has d neighbors, at most d(d − 1)35

vertices at distance 2, and exactly d vertices at distance at least 3 (since36

those are the neighbors of x in G2 ∼= G, which must also be d-regular),37

thus |G| ≤ 1+ d+ d(d− 1) + d = d2 + d+1. Note also that the described38

structure must look the same from each vertex, and hence, that the girth39
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(length of the smallest cycle) g(G) of G satisfies g(G) ≥ 5 if and only if40

|G| = d2 + d+ 1.41

The only squco graphs on at most 7 vertices areK1 and C7 [2, 12], whose42

girths are g(K1) = ∞ and g(C7) = 7. Except for these two examples, it43

is known that a squco graph G must satisfy g(G) ∈ {3, 4, 5} [8]. There44

are known examples of such squco graphs of girth 3 and 4, but it is an45

open problem to determine whether there is actually a squco graph with46

g(G) = 5, even in the d-regular case, as reported in [12].47

We already said that for a d-regular squco graph G, we have |G| =48

d2 + d + 1 if and only if g(G) ≥ 5. Note that this can only happen for49

even d, as no graph can have an odd number of vertices of odd degree. For50

d = 0 and d = 2, K1 and C7 are the only such graphs. The problem of51

determining whether there exist a d-regular squco graph of order d2+d+1,52

for even d ≥ 4 was posed in [2], and it was already reported as equivalent53

to the problem in the previous paragraph in [12].54

Here we provide two computer-assisted proofs of Theorem 1.1. The first55

proof uses Meringer’s genreg [11]. We also present a fully independent56

computer-assisted proof based on an exhaustive depth-first search (back-57

tracking), with automorphism reductions, as described in detail in the58

next section. Both approaches construct all 4-regular graphs on 21 ver-59

tices and girth 5 and then check whether any these graphs are squco (none60

of them are). Meringer’s approach has the advantage of being a very well61

established tool, more general and very fast. The second approach has the62

advantage of being very easy to understand and reproduce, and the tech-63

nique may be easily adapted for other similar problems. We also present64

both approaches because, in our opinion, computer-assisted proofs benefit65

from redundancy.66

Theorem 1.1. There is no 4-regular squco graph of girth 5, equivalently,67

there is no 4-regular squco graph on d2 + d+ 1 = 21 vertices.68

First Proof. We take the list of all 4-regular graphs of girth 5 on 2169

vertices from [3] which where generated using genreg [11], and we directly70

check that all of these 8 graphs are not squco. 271
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2 Second Proof of Theorem 1.172

We used GAP [9] and YAGS [7] to implement a depth-first search (DFS,73

aka backtracking) algorithm, with isomorphism reductions, to perform an74

exhaustive search and determine the inexistence of such graphs. YAGS’s75

backtracking facilities were specially useful. The algorithm took 8.6 min-76

utes to finish on an Intel Core i5, at 3.2GHz. To facilitate the reproducibil-77

ity of this result, we provide the full code as supplementary material [10]78

and a concise description here.79

The algorithm starts with an initial scaffolding H (see Figure 2), which80

must be a subgraph of any hypothetical 4-regular graph of girth 5 on 2181

vertices. The possible additional edges are all the possible pairs of ver-82

tices in the set {6, 7, . . . , 21} except those that already form a triangle83

with the initial scaffolding (like the edge {6, 7}). There are
(
16
2

)
− 12 =84

108 such edges. We sort these edges heuristically for performance: first85

the edges connecting vertices in {18, 19, 20, 21}, then the edges connect-86

ing vertices in {18, 19, 20, 21} with vertices in {6, 7, . . . , 17} and then,87

the rest of them. Let us call this list of possible additional edges U =88

[u` : ` ∈ {1, 2, . . . , 108}]. Since the sought graph is 4-regular, H needs89

(12 · 3 + 4 · 4)/2 = 26 additional edges to become a solution.90

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21

Figure 2: The initial scaffolding H.
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The DFS part of the algorithm is standard: At any given time, the91

algorithm considers a (partial) feasible solution encoded as a list L =92

[`1, `2, . . . , `s] (with 1 ≤ `1 < `2 < · · · < `s ≤ 108 and s ≤ 26) of the93

indices of a candidate set of edges S ⊂ U , that is, S = {u` ∈ U : ` ∈ L}.94

Then, the algorithm generates the graph G = H + S and verifies whether95

G is still a feasible solution (as described below). If it is feasible, we try96

adding an additional edge `s+1 to get L = [`1, `2, . . . , `s, `s+1]; if it is not97

feasible, we discard the last choice `s and try the next possibility `′s = `s+198

(whenever `s < 108) to get L = [`1, `2, . . . , `s−1, `
′
s]; whenever we are out of99

options, at the current depth s, we cut out the last index and try the next100

option at depth s− 1. All of this is accomplished by YAGS’s backtracking101

facilities, by means of the YAGS’s function Backtrack [7].102

A (partial) candidate solution G = H + S is considered feasible, only if103

none of the following conditions hold:104

1. A vertex in G already exceeds degree 4.105

2. A vertex in G will not be able to achieve degree 4 with the remaining106

edges (i.e. the edges not yet considered: {u` ∈ U : ` > `s}).107

3. The girth of G becomes less than 5.108

4. The current candidate edge indices L is equivalent, up to an isomor-109

phism of the initial scaffolding H, to a previously considered case.110

Not all of the automorphism group of H is used in the above condi-111

tion 4, since |Aut(H)| = (4!)2(3!)4 = 746, 496 and that would make the112

verification too slow. Instead it was sufficient for us to consider 6 sub-113

groups of Aut(H), namely the group that permutes freely the vertices in114

{18, 19, 20, 21}, the 4 subgroups that respectively permute freely the four115

bunches of sibling leaves: {6, 7, 8}, {9, 10, 11}, {12, 13, 14} and {15, 16, 17},116

and the subgroup that freely permutes the vertices {2, 3, 4, 5} (the corre-117

sponding leaves are permuted accordingly, leaving the relative order of the118

sibling leaves intact). The number of permutations to consider is then119

2 · 4! + 4 · 3! = 72. These subgroups act on vertices, but they also in-120

herit a natural action on the possible additional edges U (element-wise)121

and hence on the positions {1, 2, . . . , 108} of these edges in U (such that122
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σ · ` = `′ if and only if σ · u` = u`′ , for any permutation σ in any of123

these six groups). It follows that these groups also act naturally on the124

configurations L (considering L as a set of indices).125

Instead of storing all the previously considered cases, we simply try all126

cases L in lexicographic order and hence, whenever we have a new case127

L, we compute the orbit of L under the action of each of the previous 6128

subgroups and discard the current case, whenever any of these 6 orbits129

contain a case L′ which is lexicographically smaller than L.130

The set of candidate edges (and hence G = H+S) is accepted when s =131

26 and the graph G is squco (explicitly tested). Otherwise the algorithm132

returns ’fail’ after all of the search space is explored, which is what actually133

happens.134

3 Open problems135

We point out that our algorithm considered 2, 210, 423 cases at an aver-136

age rate of 4, 245 cases per second (8.6 minutes). Removing the condition137

4 (the symmetry-checking condition) from the algorithm gives us an es-138

timated of 1010 cases to consider, at an average rate of 4, 314 cases per139

second (8 months). As a reference, we mention that not checking any of140

the four conditions, gives us
∑26

i=0

(
108−26+i

i

)
≈ 1025 cases at an average141

rate of 4, 879 cases per second (58 billion years).142

For d = 6, the total search space is about 10108 (compared to the 1025143

of the case d = 4). Therefore, different techniques would be required for144

solving the following problem:145

Problem 1. [2, 12] Is there a d-regular squco graph on d2+ d+1 vertices146

for even d ≥ 6?147

We already said that when d is odd, G can not achieve the order d2+d+1.148

But what about d2 + d? Well, it turns out that The Franklin graph (see149

Figure 1(c)) achieves precisely this for d = 3. Besides, it is easy to show150

that any d-regular squco graph on d2 + d vertices, must contain an initial151



On 4-regular square-complementary graphs of large girth 7

scaffolding like that in Figure 2, but with one pair of leaves from different152

bunches identified (say, 8 and 9 in Figure 2), hence the graph has girth 4.153

Since this structure must look the same as viewed from any vertex, every154

vertex must be contained in a unique 4-cycle. This can only happen when155

d2 + d is a multiple of 4 and hence, since d is odd, when d ≡ 3 (mod 4).156

This motivates the following problem:157

Problem 2. Is there a d-regular squco graph on d2 + d vertices for d ≡ 3158

(mod 4), d ≥ 7?159

When d ≡ 1 (mod 4), we must have, |G| ≤ d2 + d − 1, but this upper160

bound can not be met, since that would imply an impossible graph having161

an odd number of vertices of odd degree. Hence for d ≡ 1 (mod 4), we162

must have |G| ≤ d2 + d− 2:163

Problem 3. Is there a d-regular squco graph on d2 + d − 2 vertices for164

d ≡ 1 (mod 4), d ≥ 5?165

Actually, besides the Franklin graph, all known d-regular squco graphs166

have an even d. So it is even interesting to ask the following:167

Problem 4. Is there a d-regular squco graph for odd d ≥ 5?168

Finally, if 21 is not the maximum order of a 4-regular squco graph, which169

is it?170

Problem 5. Which is the maximum order of a 4-regular squco graph?171

Acknowledgments We are grateful to the anonymous reviewers for their172

observations that made this a better paper.173
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