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The Erdős’ problem on absorbent sets by monochromatic directed paths in m-colored tourna-
ments
Hortensia Galeana-Sánchez, Juan José Montellano, Bernardo Llano 12
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Pláticas Invitadas

The rectilinear crossing number of
Kn: closing in (or are we?)

Gelasio Salazar∗

Instituto de Fisica. Universidad Autónoma de
San Luis Potośı

San Luis Potośı México

Keywords: Crossing number, Rectilinear crossing num-
ber.

The problem of determining the rectilinear crossing
number of the complete graphs Kn is an open classical
problem in discrete geometry. A major breakthrough was
achieved in 2003 by two teams of researchers working in-
dependently (Abrego and Fernandez-Merchant; and Lo-
vasz, Vesztergombi, Wagner and Welzl), revealing and
exploiting the close ties of this problem to other classical
problems, such as the number of convex quadrilaterals
in a point set, the number of (≤ k)–sets in a point set,
the number of halving lines, and Sylvester’s Four Point
Problem. Since then, we have seen a sequence of improve-
ments both from the lower bound and from the upper
bound sides of the problem, and nowadays the gap be-
tween these bounds is very small. Our aim in this talk is
to review the state of the art of these problems.

From Chordal to Helly circular-arc
graphs

Liliana Alcón ∗ Marisa Gutierrez

Departamento de Matemática, Facultad
Ciencias Exactas

UNLP
La Plata - Argentina

Abstract

We consider simple, finite, undirected graphs. Given a
graph G, V (G) and E(G) denote respectively the vertex
set and the edge set of G.

The intersection graph of a family F of non-empty
sets is obtained by representing each set by a vertex and
connecting two vertices by and edge if and only if the
corresponding sets intersect.

A complete set of G is a subset of V (G) inducing a
complete subgraph. A clique is a maximal complete set.
The family of cliques of G is denoted by C(G). The clique
graph of G, K(G), is the intersection graph of C(G). The
weighted clique graph of G, Kw(G), is the complete graph
with the members of C(G) as vertices, and each edge QQ′

weighted by | Q ∩Q′ |.
A chordal graph is a graph such that every cycle with

more than three vertices has a chord, i.e. an edge join-
ing nonconsecutive vertices of the cycle. The following
needed background of chordal graphs is based in refer-
ences [1, 2, 3, 4, 8] and is also contained in books [6, 7].

A tree is a connected graph without cycles. A subtree
of a tree T is a subset of V (T ) inducing a connected sub-
graph which is also called a subtree of T . A graph G is
chordal if and only if there exists a tree T and a family F
of subtrees of T such that G is the intersection graph of
F . The pair (T,F) is called a tree representation of G.

A clique-tree of G is any tree T whose vertices corre-
spond to the cliques of G, that is V (T ) = {Q,Q ∈ C(G)},
and, for any vertex v ∈ V (G), the set Qv = {Q ∈
C(G)/v ∈ Q} is a subtree of T .

It is clear that if T is a clique-tree of G, then
(T, (Qv)v∈V (G)) is a tree representation of G, even more,

Theorem 1. A graph G admits a tree representation if
and only if G admits a clique tree.

The following theorem provides two alternative man-
ners of determining if a graph G admits a clique tree.

Theorem 2. For any chordal graph G the following state-
ments are equivalent.

1. T is a clique tree of G.

2. T is a maximum spanning tree of Kw(G).

3. T is a spanning tree of Kw(G) with weight

w(T ) = (
∑

Q∈C(G)

| Q | )− | V (G) | .

An arc of a cycle C is a subset of consecutive vertices
of C. A graph G is said a circular-arc graph if there
exists a cycle C and a family A of arcs of C such that G
is the intersection graph of A. The pair (C,A) is called
a circular-arc representation of G.

A set family satisfies the Helly property if any pair-
wise intersecting subfamily has non empty intersection.
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Any family of subtrees of a tree has the Helly property,
but not any family of arcs of a cycle has the Helly prop-
erty. Graphs admitting a Helly circular-arc representa-
tion, i.e. a circular-arc representation such that the family
of arcs has the Helly property, are called Helly circular-
arc graphs.

A clique-cycle of a graph G is any cycle C whose ver-
tices correspond to the cliques of G, that is V (C) =
{Q,Q ∈ C(G)}, and, for any vertex v ∈ V (G), Qv =
{Q ∈ C(G)/v ∈ Q} is an arc of C. It is clear that if
C is a clique-cycle of G, then (C, (Qv)v∈V (G)) is a Helly
circular-arc representation of G.

The following theorem, proved in [5], is equivalent to
Theorem 1 for Helly circular-arc graphs.

Theorem 3. A graph G admits a Helly circular-arc rep-
resentation if and only if G admits a clique cycle.

In this work, we prove the following theorem which is
equivalent to Theorem 2 for Helly circular-arc.

Theorem 4. For any Helly circular-arc graph G the fol-
lowing statements are equivalent.

1. C is a clique cycle of G.

2. C is a maximum spanning cycle of Kw(G).

3. C is a spanning cycle of Kw(G) with weight

w(T ) = (
∑

Q∈C(G)

| Q | )− | V (G) | + | U(G) |,

where U(G) is the set of universal vertices of G.

We obtain general results which have Theorems 2 and
4 as corollaries. We investigate other classes of intersec-
tion graphs for which these results can be applied.
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The maximum number of edges in
the line graph

Bernardo M. Ábrego∗

Silvia Fernández-Merchant
Michael G. Neubauer William Watkins

California State University
Northridge United States of America

Keywords: Line graph, squares of degrees.

Let G(v, e) be the set of all simple graphs with v ver-
tices and e edges and let P2(G) =

∑
d2

i denote the sum
of the squares of the degrees, d1, . . . , dv, of the vertices of
G.

In this talk we consider the problem of maximizing
the number of edges of the line graph L(G) of a graph G
in G(v, e). We first show that the problem is equivalent
to finding the maximum value of P2(G) =

∑
d2

i over all
graphs in G(v, e).

We then provide a complete solution to the problem
by showing the following:

The maximum value of P2(G) for G ∈ G(v, e) occurs
at one or both of two special graphs in G(v, e); the quasi-
star graph or the quasi-complete graph. For each pair
(v, e), we determine which of these two graphs has the
larger value of P2(G).

Moreover, we classify all graphs G in G(v, e) that
achieve equality. That is, we find all other graphs in
G(v, e) for which the maximum value of P2(G) is attained.
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On colouring of graphs

Célia P. de Mello∗

University of Campinas
Campinas, Brazil

Keywords: total colouring, edge colouring, split graphs,
indifference graphs.

A total colouring of a graph G is a colouring of its
vertices and edges such that no adjacent vertices, no ad-
jacent edges, and no incident vertices and edges get the
same color. An edge colouring of G is a partial case of to-
tal colouring when only the edges are colored. The mini-
mum number of colours needed in each case is called total-
chromatic number (χT (G)) and chromatic index (χ′(G)),
respectively. Clearly, χ′(G) ≥ Δ(G) and χT (G) ≥ Δ(G)+
1, where Δ(G) is the maximum degree of G. It is well
known that to decide whether χ′(G) = Δ(G) or χT (G) =
Δ(G) + 1 is NP-complete. Moreover, these problems re-
main NP-complete for several classes. In this talk, we
will discuss results on total and edge colourings of some
classes of graphs.

Why Cliques?

Erich Prisner∗

Franklin College
Lugano Switzerland

Keywords: cliques, bicliques, dicliques.

There are certain variants of cliques, as bicliques in
bipartite or general graphs, or dicliques in digraphs. Dif-
ferent from the clique case, these concepts also come in
two flavors, the induced and non-induced case. Now it is
well-known that cliques, or rather complete graphs, play
a very special role in intersection graph theory. Examples
are the Erdös-Goodman-Posa result on edge-clique cover-
ings and intersection graphs, or Krausz’s-type Theorems
for characterizing special types of intersection graphs. In
this talk I will try to shed some light on the question
whether these variants of cliques mentioned above have
also such a strong relation to a certain intersection model,
and if they have, whether the corresponding classical the-
orems have also counterparts in these models.
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Contribuciones

Edge colorings induced by vertex
labelings

Mart́ın Matamala∗ José Zamora

Departamento de Ingenieŕıa Matemática y
Centro de Modelamiento Matemático (UMI
2807, CNRS), Facultad de Ciencias F́ısicas y

Matemáticas, Universidad de Chile,
Santiago Chile

Keywords: Graph labeling, bipartite graphs.

1 Introduction

Let G = (V,E) be an undirected connected graph. A
labeling of G is an injective function ϕ : V → N. Its line
function ϕ̂ : E → N is defined by ϕ̂(uv) = |ϕ(u) − ϕ(v)|.

A labeling ϕ is a graceful labeling of G = (V,E) if it
satisfies the following two conditions.

(1) ϕ(V ) ⊆ [|E|] := {0, . . . , |E|};
(2) ϕ̂ is a bijective function.
Graceful labelings have been extensively studied in the

literature (see [2] for a dynamic survey). They were intro-
duced by Rosa as tools for dealing with decompositions
of complete graphs into copies of given trees. In this con-
text, Rosa conjectured that every tree admits a graceful
labeling raising the now famous Graceful Conjecture [4].

While this conjecture is still wide open, it has been
attacked by considering subfamilies of trees, and proving
that they admit a graceful labeling, or by modifying con-
dition (1) or condition (2), and by proving that every tree
admits a labeling that satisfies the modified (weaker) con-
ditions. In these situations the considered labelings are
not longer graceful labelings.

In this work we follow the latter approach. On one
hand, instead of considering condition (2), we shall con-
sider the following alternative conditions for function ϕ
and its line function ϕ̂.

• ϕ̂ is an edge-coloring.

• ϕ is extreme: For every v ∈ V , ϕ(v) = max{ϕ(u) :
uv ∈ E} or ϕ(v) = min{ϕ(u) : uv ∈ E}.

• ϕ is threshold: there is an integer k, such that for
each edge uv,

min{ϕ(u), ϕ(v)} < k ≤ max{ϕ(u), ϕ(v)}.

When ϕ is threshold or extreme, then ϕ̂ is an edge col-
oring. Threshold and extreme labelings were considered
as an additional requirement to graceful labeling in [3]
and in [1]. While it is known that not every tree ad-
mits a graceful threshold labeling [3], Cahit conjectured
that every tree has a graceful extreme labeling [1]. In
this work we consider families of labelings less restrictive
than graceful colorings. The family T H of all threshold
labelings, and the family E of all extreme labeling. To
the best of our knowledge, no work has been done along
this line, where global condition (2) is replaced by any of
these local conditions.

On the other hand, we shall explore labelings which
does not satisfy Condition (1). It is clear that a strong re-
striction when constructing graceful labelings for a given
graph G = (V,E), is that the set of differences of [|E|] is
tight : There are exactly |E| different values for ϕ̂. Hence,
it would be more easy for a graph to admit a labeling ϕ
satisfying condition (2) and whose image is a set of non
negative integers B other than [|E|]. By instance, the
latter statement easily holds for a set B whose set of dif-
ferences given by B − B := {|u − v| : u, v ∈ B, u �= v} is
complete, that is, it has

(|B|
2

)
elements.

In order to assess previous ideas we consider, for a
class of labelings F , two classes of graphs: F−robust
graphs and F−optimal graphs. A graph G on n vertices
is F−robust if for every set B of n elements it admits a
labeling in F whose image is B. A graph G on n vertices
is F−optimal if it admits a labeling in F whose image
is [n − 1]. We denote by oF the class of all graphs that
are F−optimal and by rF the class of all graphs that are
F−robust. Clearly, rF ⊆ oF . We say that F is stable
when rF = oF and unstable otherwise.

Our first result is the following characterization of bi-
partite graphs in terms of previously defined labelings.

Theorem 1. Given a graph G = (V,E), the following
statements are equivalents.

1. G is bipartite.

2. G is T H−robust.

3. G is T H−optimal.

4. G admits a threshold labeling.

5. G is E−robust.

6. G is E−optimal.

7. G admits an extreme labeling.

Corollary 2. The class T H and the class E are stables.
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2 Interval bipartite graphs

Theorem 1 gives a complete characterization of bipartite
graphs in terms of locally restricted labelings, while the
Graceful Conjecture can be seen as a characterization of
trees in terms of globally restricted labelings.

Hence, it is reasonable to explore further restrictions
on locally restricted labelings. An interval of a set of
integers B is any subset I = [x, y] of B with x, y ∈ B,
such that for each z ∈ B, if x ≤ z ≤ y, then z ∈ I. We
say that ϕ is an interval labeling of G = (V,E) if ∀v ∈ V,
the set {ϕ(u) : uv ∈ E} is an interval of ϕ(V ). Let I be
the class of interval labeling. One can see that not every
bipartite graph admits an interval labeling. However, we
can give an structural characterization of those bipartite
graphs that do admit.

Theorem 3. For a given graph G = (V,E), the following
statements are equivalents.

1. G is bipartite with parts X = {v1, . . . , vn} and Y =
{vn+1, . . . , vn+m} such that if vi and vj are adjacent
with u, for some u, then for each k with i ≤ k ≤ j,
the vertex vk is adjacent with u.

2. G is I−robust.

3. G is I−optimal.

4. G admits an interval labeling.

Corollary 4. The class I is stable.

3 Trees

In this section we study graceful labelings that are interval
labelings. It is not hard to see that a connected optimal
graceful colorable graph must be a tree.

Let Ag denote the class of graceful labelings in A, for
A ∈ {I, T H, E}.

We now show that Ig is stable. Moreover, we show
that Ig−robust coincides with the class of trees admiting
a dominating path (usually called caterpillars).

Theorem 5. For a connected graph G the following are
equivalents.

(i) G is a caterpillar.

(ii) G is Ig−robust.

(iii) G is Ig−optimal.

(iv) G is a tree and it admits a graceful interval labeling.

Corollary 6. The class Ig is stable.
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On L(2, 1)-labeling of block graphs

Flavia Bonomo†,∗ Márcia R. Cerioli‡

†CONICET and Departamento de
Computación, Facultad de Ciencias Exactas y

Naturales, Universidad de Buenos Aires,
Buenos Aires, Argentina. e-mail:

fbonomo@dc.uba.ar

‡Instituto de Matemática and COPPE/Sistemas
e Computação, Universidade Federal do Rio de

Janeiro,
Rio de Janeiro, Brazil.

e-mail: cerioli@cos.ufrj.br

Keywords: block graphs, distance-two labeling problem,
graph coloring.

1 Introduction

The distance-two labeling problem of graphs was pro-
posed by Griggs and Roberts in 1988 (c.f. [6]), and it
is a variation of the frequency assignment problem in-
troduced by Hale in 1980 [7]. Suppose we are given a
number of transmitters or stations. The L(2, 1)-labeling
problem is to assign frequencies (nonnegative integers) to
the transmitters so that “close” transmitters receive dif-
ferent frequencies and “very close” transmitters receive
frequencies that are at least two frequencies apart.
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Let G be a simple, finite, undirected graph with vertex
set V (G). Let Δ(G) denote the maximum degree of a
vertex of G, dG(u, v) denote the distance in G between
vertices u and v, and ω(G) denote the maximum size of
a clique of G.

An L(2, 1)-labeling of a graph G is a function f :
V (G) → N0 such that |f(u) − f(v)| ≥ 1 if dG(u, v) = 2
and |f(u) − f(v)| ≥ 2 if dG(u, v) = 1. For a nonnega-
tive integer k, a k-L(2, 1)-labeling is an L(2, 1)-labeling
such that no label is greater than k. The L(2, 1)-labeling
number of G, denoted by λ(G), is the smallest number
k such that G has a k-L(2, 1)-labeling. It is not difficult
to see that λ(G) ≥ Δ(G) + 1, and λ(G) ≥ 2ω(G) − 2.
The L(2, 1)-labeling problem has been studied widely.
Griggs and Yeh [6] showed that the L(2, 1)-labeling prob-
lem is NP-complete for general graphs. They proved that
λ(G) ≤ Δ2(G) + 2Δ(G) and conjectured that λ(G) ≤
Δ2(G) for general graphs different from K2. Chang and
Kuo [2] proved that λ(G) ≤ Δ2(G) + Δ(G) and gave a
linear-time algorithm for the L(2, 1)-labeling problem on
cographs. Král and Škrekovski [8] proved that λ(G) ≤
Δ2(G) + Δ(G) − 1 for graphs different from K2. For
further studies on the L(2, 1)-labeling and some general-
izations, see [1, 3, 4, 5, 9, 10].

A block of a graph is a maximal 2-connected compo-
nent. An end-block is a block containing exactly one cut-
point. A block-cutpoint tree of a graph G is a tree whose
vertices are the cutpoints of G plus one vertex (not a cut-
point) for each end-block of G, and such that two vertices
are adjacent if and only if they belong to the same block
of G. A graph is a block graph if it is connected and every
block is a complete.

Block graphs with ω(G) = 2 are trees. Griggs and
Yeh [6] showed that Δ(G) + 1 ≤ λ(G) ≤ Δ(G) + 2 for
trees, and Chang and Kuo [2] gave a polynomial-time
algorithm for the L(2, 1)-labeling problem on this class
of graphs. However, there is no simple characterization
distinguishing the cases λ = Δ + 1 and λ = Δ + 2. For
the special case of paths, it is not difficult to see that
λ(P1) = 0, λ(P2) = 2, λ(P3) = λ(P4) = 3 and λ(Pn) = 4
for n ≥ 5.

The aim of this work is to study the L(2, 1)-labeling
problem on block graphs. We find upper bounds for λ(G)
in the general case, and we tight those bounds for some
particular cases with ω(G) = 3.

2 Main results

Theorem 1. Let G be a block graph with maximum degree
Δ and maximum clique size ω. Then λ(G) ≤ max{Δ +
2,min{3ω − 2,Δ + ω}}.

Corollary 2. Let G be a block graph with maximum
degree Δ and maximum clique size 3. If Δ ≥ 5 then
λ(G) ≤ Δ + 2, if Δ ≤ 4 then λ(G) ≤ 7.

These bounds are tight for Δ = 4 and Δ ≥ 5, and
they are attained by the central and rightmost graphs of
Figure 1, respectively. We can improve the bound for
Δ = 3.

Theorem 3. Let G be a block graph with maximum degree
3 and maximum clique size 3. Then λ(G) ≤ 6.

The bound is tight, and it is attained by the leftmost
graph of Figure 1.

Figure 1: Examples showing tightness of the bounds.

Theorem 4. Let G be a block graph with maximum degree
4 and maximum clique size 3. If G does not contain the
leftmost graph in Figure 2, then λ(G) ≤ 6.

The computational complexity of finding λ(G) on a
block graph G is open, even when ω(G) = 3. Neverthe-
less, the proofs of the previous theorems are constructive,
and lead to algorithms to produce L(2, 1)-colorings for
graphs with the showed upper bounds.

2.1 Paths of triangles

We will call path of triangles to a block graph G such
that ω(G) = 3 and the block-cutpoint tree of G is a path.
Examples of paths of triangles can be seen in Figure 2.
Note that, since ω(G) = 3, then λ(G) ≥ 4.

Figure 2: Paths of triangles.

For these kind of graphs we prove that λ(G) ≤ Δ(G)+
2 and give a complete characterization for each possible
value of λ.

Theorem 5. Let G be a path of triangles with maximum
degree Δ. Then λ(G) ≤ 6. Moreover, λ(G) = 6 if and
only if G contains the leftmost graph in Figure 2, and
λ(G) = 4 if and only if G does not contain any of the
graphs in Figure 3.
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Tercer Taller Latinoamericano de Clanes en Gráficas

Figure 3: Paths of triangles with λ = 5.

This characterization leads to an efficient algorithm to
compute λ(G) and an optimum L(2, 1) coloring on paths
of triangles.
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Keywords: clique graphs, posets, homotopy type, simpli-
cial complex.

The aim of this talk is to present the main results of
the paper [4]

Let P denote a finite partially ordered set, and G de-
note a finite simple graph. The poset P has an associated
simplicial complex Δ(P ) where the simplices are the to-
tally ordered subsets of P (see for example [2, 5]). And
also to the graph G we can associate a complex Δ(G)
with simplices the complete subgraphs of G. In this way
we can attach topological concepts to both posets and
graphs, and for example, we will say that P and G are
homotopy equivalent, and write P 
 Q, whenever the ge-
ometrical realizations of Δ(P ) and Δ(G) are homotopy
equivalent.

We will use well-known techniques and results from
poset topology (such as Quillen’s Theorem) to analyze the
homotopy type of complexes of the form Δ(G). Given any
poset P we define two graphs Ω(P ) and �(P ) as follows:
The vertex set of Ω(P ) is the set of minimal elements
of P , and two minimal elements are declared adjacent
whenever they have a common upper bound. The graph
�(P ) is defined dually with the maximal elements of P
as its vertices. For example, if G is a graph and P is the
poset of complete subgraphs of G ordered by inclusion,
one has that Ω(P ) is G and that �(P ) is K(G), the clique
graph of G.

Under relatively mild hypothesis on P , it can be proven
that Ω(P ) has the same homotopy type as �(P ). In this
way, we obtain a generalization of the result contained
in [3], finding a more general condition that implies that a
graph G is homotopy equivalent to its clique graph K(G).
Furthermore, as a composition of two graph operators
studied in [1], we obtain a graph operator G �→ H(G),
that presevers clique-Hellyness and dismantlability (this
follows trivially from [1]), but we also show thatH has the
property that G 
 H(G) 
 K(H(G)) for any graph G.
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1 Introduction

Our graphs are simple, finite and connected.
Any graph G can be seen as a topological space via its

complex of completes Δ(G). The vertices of this simplicial
complex are those of G, and its simplices are the vertex
sets of the complete subgraphs of G. Rather than making
explicit mention of the complex Δ(G) or its geometric
realization, we directly apply topological concepts and
constructions to the graph G.

We are mainly interested in clique graphs. The study
of the clique graph operator under the topological view-
point of the complex of completes was initiated by Prisner
in [9, 8] and has been further pursued in [1, 2, 3, 4, 5, 6].

Among other things, Prisner proved in [9] that the first
modulo 2 homology groups of any graph and its clique
graph are always isomorphic:

H1(K(G),Z2) ∼= H1(G,Z2)

We have proved recently [7] that even the fundamental
group remains invariant under the clique graph operator:

π1(K(G)) ∼= π1(G)

2 Main results

As a matter of fact, we deduce the clique-invariance of
the fundamental group from a more general result:

Theorem 1. Let B = (X,Y ) be a connected bipartite
graph. Then B2, B2[X] and B2[Y ] have isomorphic fun-
damental groups.

Here B2 denotes the square of B, and B2[X] and
B2[Y ] are the subgraphs of B2 induced by the parts X
and Y of B.

Recall that a complete edge cover of a graph G is a
family F = (Gi : i ∈ I) of complete subgraphs of G such
that any vertex and any edge of G lie in some Gi. In
other words, G is the union of its complete subgraphs Gi,
i ∈ I.

Applying Theorem 1 to the bipartite incidence graph
of vertices of G and members of F we obtain:

Theorem 2. Let F be a complete edge cover of the graph
G, and let H be the intersection graph of F , then, π1(H) ∼=
π1(G).

That π1(K(G)) ∼= π1(G) then follows in the case that
F is the family of cliques of G, but Theorem 2 can also
be applied to other graph operators. Recall that the
line graph L(G) is the intersection graph of the edges
of G. The graph of completes C(G) is the intersection
graph of the completes of G. For m ≥ 2, the m-simplex
graph �m(G) is the intersection graph of the subset of all
inclusion-maximal elements in the set of all completes of
cardinality at most m of G (see [8]). By Theorem 2 we
have:

Theorem 3. Let the graph operator O be a composition
O = O1 ◦O2 ◦ · · · ◦ On where each Oi is one of L, C, K,
or �m (m ≥ 2). Then π1(O(G)) ∼= π1(G) for each graph
G.
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The total graph T (G) has V (G) ∪ E(G) as vertex set
and, in addition of all edges of G and L(G), T (G) has
also all edges of the form ve where v ∈ G, e ∈ L(G) and
v ∈ e. Applying directly Theorem 1 we get:

Theorem 4. Any non-trivial graph G has the same fun-
damental group as L(G) and T (G)
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1 Introducción

Los grafos cordales fueron definidos como aquellos que no
poseen ciclos inducidos de 4 vértices o más. Gavril [1]
probó que todo grafo cordal, es el grafo de intersección
de una familia de subárboles de algún árbol. Más formal-
mente, un grafo G es cordal si y sólo si existe un árbol
T y una familia F = (Fv)v∈V (G) de vértices de T tal que
cada Fv induce un subárbol de T y v �= w son adyacentes
si y sólo si Fv ∩ Fw �= ∅. (T, F ) es una representación de
G.

Especificando condiciones sobre las representaciones
se han definido distintas subclases de los grafos cordales
[2]. Aśı, los grafos UV son los cordales para los cuales
existe un T tal que cada Fv induce un camino del T . Los
grafos DV son los cordales para los cuales existe un T
orientable de modo que los subárboles son caminos dirigi-
dos. Los grafos RDV son los cordales que poseen algún
T orientable enraizado de modo que los subárboles son
caminos dirigidos.

Las tres clases UV , DV y RDV son hereditarias, o sea
todo subgrafo inducido de un grafo de la clase está en la
clase, por lo cual pueden ser caracterizadas por familias de
prohibidos minimales. Un grafo G es prohibido minimal
para una clase A si G /∈ A pero para todo v vértice de G
se tiene que G− v ∈ A.
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En el presente trabajo, para cada clase UV , DV y
RDV se estudian los grafos prohibidos minimales con
vértices falsos gemelos. Se dice que dos vértices son falsos
gemelos si no son adyacentes y tienen los mismos vecinos.
Se prueba que no hay ningún grafo de este tipo prohibido
minimal para DV ni para RDV mientras que para UV
los únicos son los cometas impares (ver figura).

2 Prohibidos minimales y falsos gemelos

Si G es un grafo, se llama C(G) a la familia de cliques de
G y DC(G) a la familia dual de ésta, es decir, DC(G) =
(Cv)v∈V (G) donde Cv es el conjunto de cliques de G a los
cuales v pertenece. Es fácil verificar que cualquier grafo
G es el grafo de intersección de DC(G). Se ha probado
que un grafo G es UV (resp.DV, resp. RDV) si y sólo si
existe un árbol T cuyos vértices son los cliques de G y tal
que (T,DC(G)) es una representación UV (resp.DV, resp.
RDV) de G. Se dice que T es un árbol clique de G y que
(T,DC(G)) es una representación canónica de G [2].

Un vértice s ∈ V (G) es simplicial si N(s) es un com-
pleto de G. Un vértice simplicial se dice esencial si N(s)
está contenido en más de un clique de G. Luego se tiene
que s es un simplicial escencial de G si y sólo si C(G−s) =
C(G)−Hs siendo Hs el único clique de G que contiene a
s. Dado un grafo G se dice que dos vértices x e y de G
son gemelos si N [x] = N [y] y que x e y son falsos gemelos
si x e y no son adyacentes y N(x) = N(y).

Observar que dado que un grafo cordal no posee ci-
clos inducidos de 4 vértices, se tiene que si x e y son
falsos gemelos de un grafo cordal, entonces x e y deben
ser vértices simpliciales.

Claramente, si (T, (Cv)v∈V (G)) es una representación
canónica de G se tiene que x e y son vértices gemelos si
y sólo si Cx = Cy. Es fácil observar que si G es un grafo
prohibido minimal para UV o DV o RDV entonces G
no puede poseer vértices gemelos y todo simplicial de G
debe ser esencial. En cambio, existen grafos prohibidos
minimales para la clase UV con falsos gemelos.

Para probar esto veamos el rol que juegan los vértices
simpliciales esenciales en las representaciones canónicas
de un grafo cordal. Sea G un grafo cordal, x es un vértice
simplicial esencial de G y G′ = G − x. Dado que x
es simplicial esencial, como ya fue observado C(G′) =
C(G)−Hx, con lo cual si C ′

v es el conjunto de cliques de
G′ que poseen a v, se tiene que C ′

v = Cv −{Hx}, observar
que si vx no pertenece a E(G), entonces C ′

v = Cv. Como
es natural las representaciones canónicas de G y G′ están
vinculadas, más espećıficamente veamos que en algunos
casos una representación UV de G′ puede conducir a una
UV de G.

Si G un grafo cordal con x e y vértices falsos geme-
los, sabemos que ambos son vértices simpliciales de G.
Supongamos que x es un simplicial esencial de G y que G′

es un grafo UV . Sea (T ′, (C ′
v)v∈V (G′)) una representación

UV de G′, construiremos un grafo auxiliar ΠT ′ asociado
a T ′ del siguiente modo: los vértices de ΠT ′ son el vecin-
dario en T ′ deHy, sea V (ΠT ′)= {C1, ..., Cn} y CiCj ∈ΠT ′

si y sólo si existe un vij ∈ Ci ∩ Cy ∩ Cj .

Teorema 1. Sean G un grafo cordal, x e y falsos gemelos
de G y x simplicial esencial de G. Si (T ′, (C ′

v)v∈V (G′))
es una representación UV (resp. DV , resp. RDV ) de
G′ = G − x y ΠT ′ es bipartido entonces G es UV (resp.
DV , resp. RDV ).

Demostración:
Idea: Sea ΠT ′ = (A,B) se construye un árbol T par-

ticionando el vértice Hy en Hy,Hx. Las ramas de T ′ in-
cidentes en Hy que tienen vértices de A continuarán en T
incidentes en Hy, en cambio las ramas de T ′ incidentes en
Hy que tienen vértices de B serán en T incidentes a Hx.�

Para concluir construiremos 3 grafos (ver figura).

• Tl: árbol cometa de l puntas, es un árbol con l + 2
vértices y un vértice de grado l.

• El: estrella de l puntas, es un grafo completo Kl y l
vértices de grado 2.

• Hl: cometa de l puntas, es el grafo compuesto por
una estrella El y dos vértices x e y falsos gemelos,
siendo sus vecinos los vértices de Kl.

Es simple probar que Hl con l impar mayor o igual
a 3, es un grafo prohibido minimal para la clase UV y
prohibido no minimal para las clases DV y RDV . Mien-
tras que El con l impar mayor o igual a 3, es prohibido
minimal para las clases DV y RDV . El siguiente Coro-
lario dice que no hay otros grafos prohibidos minimales
con falsos gemelos para la clase UV .

Corolario 2. Si G un grafo prohibido minimal para la
clase UV , x e y falsos gemelos de G entonces G es un
cometa de l puntas con l impar mayor o igual que 3.

Demostración: Dado que G es un grafo prohibido min-
imal para la clase UV x e y son simpliciales esenciales
de G. Por otro lado G′ = G − x es un grafo UV , sea
(T ′, (C ′

v)v∈V (G′)) una representación UV de G′. Por el
Teorema 1, ΠT ′ no puede ser bipartido, luego tiene algún
ciclo impar.
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Sea L = C1, .., Cl un ciclo impar de ΠT ′ . Observar que
existen v12, v23, .., vl1 vértices de G induciendo un com-
pleto. Por otro lado, existen zi vértices en Ci − Cy para
cada i ∈ {1, ..., l}, tales que zi es adyacente a vi,j . Luego
v12, v23, .., vl1, z1, .., zl, x, y inducen un cometa de l puntas
Hl en G. Por la minimalidad es claro que G = Hl. �

Corolario 3. Los grafos cordales prohibidos minimales
para las clases RDV o DV no posseen falsos gemelos.

Árbol cometa de 5 puntas Estrella de 5 puntas Cometa de 5 puntas
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The Erdős’ problem on absorbent
sets by monochromatic directed
paths in m-colored tournaments

Hortensia Galeana-Sánchez
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In this talk, we consider the following problem due to
Erdős: for each m ∈ N, is there a (least) positive integer
f(m) so that every finite m-colored tournament contains
an absorbent set S by monochromatic directed paths of
f(m) vertices? In particular, is f(3) = 3? We prove sev-
eral bounds for absorbent sets of m-colored tournaments

under certain conditions on the number of colors of the
arcs incident to every vertex from its in-neighborhood
(resp. ex-neighborhood). In particular, we establish the
validity of Erdős’ problem for 3-colored tournaments with
this condition. It is also proven that a 3-colored tour-
nament containing no heterochromatic directed triangles
with at most bichromatic ex-neighborhoods (resp. in-
neighborhoods) has a kernel by monochromatic directed
paths. Some other results are valid for m-colored quasi-
transitive digraphs and, as they are a generalization of
tournaments, we obtain some special instances for which
Erdős’ problem is satisfied.
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Abstract

The Kr-packing problem is that of finding the maximum
number of pairwise disjoint cliques of size r in a graph.
This problem is NP-hard for general graphs when r ≥ 3,
and even for split graphs when r ≥ 4. Guruswami et al.
proposed a polynomial time algorithm for cographs (when
r is fixed). In this work we extended this algorithm to P4-
sparse graphs, keeping the same time complexity.

1 Introduction

The Kr-packing problem is that of finding the maximum
number of pairwise disjoint cliques of size r in a graph.
Note that, for r = 2 the problem is exactly the maximum
matching problem, which has a well-known polynomial
time algorithm, but, for r ≥ 3, this problem is NP-hard
for general graphs. Even for restricted graph classes, such
as line and total graphs (r ≥ 3), and split graphs (r ≥ 4),
the problem remains NP-hard. Guruswami et al. pro-
posed a polynomial time algorithm for cographs (when
r is fixed) [3]. In this work we extend this algorithm to
P4-sparse graphs.

1Supported in part by FAPESP and CNPq.
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Throughout this paper, G = (V (G), E(G)) denotes a
simple, finite, and undirected graph, and we use standard
graph terminology [1]. A subset M of V (G) is called a
module of G if there is no {a, b} ⊆M and c ∈ (V (G)\M)
such that {a, c} ∈ E(G) and {b, c} /∈ E(G). A module M
of G is said to be strong if there is no module N of G,
N �= M , such that N \M �= ∅, M \N �= ∅, and N∩M �= ∅.

The modular decomposition tree (MDT) of a graph G
has one node for each strong module ofG. The parent of a
node, related to strong module M , is the node associated
with the smaller strong module that properly containsM .
Hence, the MDT represents inclusions of strong modules,
from isolated vertices (leafs) to the module V (G) (the
root). If N is a non-leaf node of the MDT and M is
its corresponding module in G, then N is called serial
(parallel), if G[M ] (G[M ]) is not connected. Otherwise,
the node is called neighborhood.

A graph is P4-sparse [4] if the subgraph induced by
each module corresponding to a neighborhood node in its
MDT is isomorphic to a spider [2], which is a graph whose
vertex set may be partitioned into three sets K, S, and
H, such that: (1) |K| = |S| ≥ 2, but H can be empty; (2)
K is a clique and S is a stable set; (3) {i, j} ∈ E(G),∀i ∈
K,∀j ∈ H; (4) {i, j} /∈ E(G),∀i ∈ S,∀j ∈ H; (5) d(i) = 1
(thin spider) or d(i) = |S| − 1 (thick spider), ∀i ∈ S; and
(6) d(j) = |H| + 1 (thin spider) or d(j) = |H| + |S| − 1
(thick spider), ∀j ∈ K.

2 Kr-packing of cographs

In this section we recall the following results given by
Guruswami et al. [3], that proposed an algorithm to com-
pute in polynomial time a Kr-packing of a cograph, using
a dynamic programming technique.

To describe these results, some definitions are nec-
essary. A graph G is (n1, n2, n3, . . . , nr)-packed if there
exists a partition P of V (G) such that there are ni parts
in P which are cliques of size i in G, for all 1 ≤ i ≤ r.
This obviously implies that |V (G)| =

∑r
i=1 ini. The par-

tition P is called a (n1, n2, n3, . . . , nr)-packing of G. The
Kr-packing problem asks for the maximum value of nr

such that there is a (0, 0, 0, . . . , nr)-packing of G.
Consider the function f(G,n3, n4, . . . , nr) defined as

max{n2 : G has a (0, n2, n3, n4, . . . , nr)-packing}, and
it is undefined if G has no such packing for any value
of n2. Note that, if we compute f(G, 0, 0, . . . , nr) for
nr ≥ 0, we solve the Kr-packing problem for G. A co-
graph is a graph whose MDT has only serial and parallel
nodes. So, using the following algorithms we can compute
f(G,n3, n4, . . . , nr) recursively for any cograph G.

If N is a parallel node of the MDT of G, M is the
associated module, and M1,M2 . . . ,Mk are the modules
associated to the children of N , then G[M ] = G[M1] ∪
G[M2]∪. . .∪G[Mk]. To compute f(G[M ], n3, n4, . . . , nr),
we apply repeatedly an algorithm that computes f on
a graph G′ ∪ G′′. The algorithm returns the maximum
of f(G′, n′3, n

′
4, . . . , n

′
r) + f(G′′, n′′3 , n

′′
4 , . . . , n

′′
r ), for every

integers n′i ≥ 0 and n′′i ≥ 0 such that ni = n′i + n′′i , for
each 3 ≤ i ≤ r.

Now, if N is a serial node, then G[M ] = G[M1] +
G[M2] + . . . + G[Mk]. By a similar argument, it suf-
fices to apply the algorithm that computes f on a graph
G′ +G′′. The algorithm returns the maximum of n2,0 +
n2,1 + n2,2, for all integers ni,j such that: (1) for 1 ≤
i ≤ r, ni =

∑i
j=0 ni,j where ni,j ≥ 0 for 0 ≤ j ≤ i; (2)

n′j =
∑r

i=j ni,j and n′′j =
∑r

i=j ni,i−j for 1 ≤ j ≤ r; (3)
f(G′, n′3, . . . , n

′
r) ≥ n′2 and f(G′′, n′′3 , . . . , n

′′
r ) ≥ n′′2 ; (4)

n′ =
∑r

j=1 jn
′
j and n′′ =

∑r
j=1 jn

′′
j ; and (5)

∑r
i=2 ni,j =

0 or
∑r

i=2 ni,0 = 0.

3 Kr-packing of P4-sparse graphs

To decide the Kr-packing problem for a P4-sparse graph,
we need to solve the function f on spiders using an al-
gorithm similar to the one for joint graphs. Let G be a
spider and K, S, and H be the partition of V (G) as de-
fined in Section 1. If P is a (n1, n2, n3, . . . , nr)-packing
of G, then each Ki ∈ P either has a vertex in S or is a
subset of K ∪H. Hence, we can define, for 1 ≤ i ≤ r and
0 ≤ j ≤ i, the integer ni,j as the number of Ki ∈ P such
that |Ki ∩ K| = j and |Ki ∩ H| = i − j, and the inte-
ger nS

i as the number of Ki ∈ P such that Ki ∩ S �= ∅.
Moreover, we define n′j =

∑r
i=j ni,j as the number of

Ki ∈ P , such that Ki ∩ S = ∅ and |Ki ∩ K| = j; and
n′′j =

∑r
i=j ni,i−j as the number of Ki ∈ P , such that

Ki ∩ S = ∅ and |Ki ∩ H| = j. From the following lem-
mas, we can construct an algorithm for the Kr-packing
problem for a spider graph.

Lemma 1. A thin spider G has a (n1, n2, . . . , nr)-packing
P if, and only if, there exist non-negative integers nS

1 ,
nS

2 , and ni,j, for 1 ≤ i ≤ r and 0 ≤ j ≤ i, such that: (1)
n′′2 ≤ f(G[H], n′′3 , . . . , n

′′
r ); (2) |S| = nS

1 +nS
2 , |K| = nS

2 +∑r
i=1 in

′
i, and |H| =

∑r
i=1 in

′′
i ; and (3) ni =

∑i
j=0 ni,j

for 3 ≤ i ≤ r and ni = nS
i +

∑i
j=0 ni,j for i ∈ {1, 2}.

Lemma 2. If G is a thin spider and P is a (n1, . . . , nr)-
packing of G, then there is another (n1, . . . , nr)-packing,
P ′, of G, such that every K2 in P ′ either is contained in
H or has one vertex in S and the other in K.
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Lemma 3. A thick spider G has a (n1, . . . , nr)-packing
if, and only if, there exist non-negative integers ni,j, for
1 ≤ i ≤ r, 0 ≤ j ≤ i, and nS

i , for 1 ≤ i ≤ r, such
that: (1) n′′2 ≤ f(G[H], n′′3 , . . . , n

′′
r ); (2) |S| =

∑r
i=1 n

S
i ,

|K| =
∑r

i=2(i − 1)nS
i +

∑r
i=1 in

′
i, and |H| =

∑r
i=1 in

′′
i ;

(3) nS
i = 0, for i > |K|; and (4) ni = nS

i +
∑i

j=0 ni,j, for
1 ≤ i ≤ r.

Lemma 4. If a thick spider G has a (n1, n2, . . . , nr)-
packing, then there is another partition P ′, which is also
a (n1, n2, . . . , nr)-packing of G, but every K2 in P ′ either
is contained in H or has a vertex in S.

Now we are ready to describe the algorithm that finds
Kr-packing for a P4-sparse graph G. The function f is
computed in each node of the MDT of G, processing serial
and parallel nodes as in Section 2. For neighborhood
nodes, f is computed as the maximum of n2,0 + nS

2 over
all integers ni,j and nS

i satisfying the conditions given
in lemmas 1 and 3 and the condition

∑r
i=2 ni,i = 0 or∑r

i=2 ni,0 = 0.
The expression maximized is due to lemmas 2 and 4.

The additional condition comes from the fact that G[K ∪
H] = G[K] + G[H] and from the lemma: If P is a
(n1, n2, . . . , nr)-packing of G = G′ +G′′, then there exists
a (n1, n2, . . . , nr)-packing P ′ covering precisely the same
vertices as P does and P ′ does not contain C ′ and C ′′

such that C ′ ⊆ V (G′) and C ′′ ⊆ V (G′′).2

The MDT of any graph is obtained in linear time [5].
We also can identify if a graph is spider, as well as iden-
tify the partition of the spider in the three sets K, S, and
H, in linear time [2]. Since the number of possibilities
evaluated for spiders is a subset of the possibilities evalu-
ated for joint graphs, the time complexity of the proposed
algorithm is also polynomial.

We conclude this note observing that MDT can be
applied to solve the Kr-packing problem for other graphs
that have neighborhood nodes in its MDT well character-
ized, such as P4-tidy graphs [2].
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1 Introduction

In this paper we determine the K-behavior of circular-
arc graphs. That is, we decide if the clique graph of a
circular-arc graph G is K-convergent, K-divergent or K-
null. Furthermore, when G is K-convergent, we charac-
terize the graph to which G K-converges. The method
leads to a linear time algorithm for this decision problem.

The iterated clique graph is defined byK0(G) = G and
Ki+1(G) = K(Ki(G)). The analysis of the K-behaviour
of a clique graph is one of the main topics about iterated
clique graphs. A graph G is K-null if Ki(G) is the trivial
graph, for some i. Say that G is K-periodic with period
i if Ki(G) = G for some i > 0. When the period is 1
the K-periodic graph is called self-clique. A graph is K-
convergent when it is K-null or Ki(G) is K-periodic for
some i ≥ 0. If G is not K-convergent, then |V (Ki(G))|
is unbounded when i→ ∞; in this case G is K-divergent.
For the general case, the problem of determining the K-
behavior of a graph is not known even if it is computable.
Nevertheless, polynomial-time algorithms to decide the
K-behavior of a few classes are known. This is the case for
cographs [6], P4-tidy graphs [2] and complete multipartite
graphs [10]. Clique-Helly graphs K-converge to graphs
with period either 1 or 2 [4], interval graphs are K-null
and octahedra of dimension at least 3 K-diverge.
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The k-th power of a graph G is the graph Gk that
has the same vertices as G and two vertices are adja-
cent whenever their distance is lower than or equal to
k. The neighborhood NG(v) of a vertex v is the set
of its adjacent vertices, and its closed neighborhood is
NG[v] = NG(v) ∪ {v}. When there is no ambiguity, we
may simply write N(v) or N [v]. A vertex v is universal
when N [v] = V (G). Vertex v dominates vertex w when
N [w] ⊆ N [v], and they are twins when w also dominates
v. A dismantling of a graph G is the subgraph obtained
from G by iteratively removing any vertex v, which is
dominated by some vertex w �= v, in the subgraph so far
obtained. It is not hard to see that the dismantling is
unique up to isomorphism. In [5] it is proved that the
K-behavior is the same for a graph and its dismantling.
We remark that for general graphs, the dismantling of a
graph can be computed in polynomial-time.

A circular-arc (CA) model M is a pair (C,A), where
C is a circle and A is a collection of arcs of C. When
traversing the circle C, we will always choose the clock-
wise direction. If s, t are points of C, write (s, t) to mean
the arc of C defined by traversing the circle from s to
t. Call s, t the extremes of (s, t), while s is the beginning
point and t the ending point of the arc. For A ∈ A, write
A = (s(A), t(A)). The extremes of A are those of all arcs
in A.

When no arc of A contains any other, M is a proper
circular-arc (PCA) model. When every set of pairwise
intersecting arcs share a common point, M is called a
Helly circular-arc (HCA) model. A CA (PCA) (HCA)
graph is the intersection graph of a CA (PCA) (HCA)
model.

Clique graphs of Helly circular-arc graphs have been
considered in [3]. Previous results on the K-behavior of
circular-arc graphs have been before presented in [1]. In
fact, in [1] it has been proved that an HCA graph G is K-
periodic if and only if G is isomorphic to Ck

n with n > 3k.
Moreover, in the same paper it has been proved that K-
periodic Helly circular-arc graphs are always self-clique.

We extend the above results, as follows. First we em-
ploy the dismantling of G to observe that its K-behavior
follows from the results of [7] and [9]. We then conclude
that G is K-null if and only if its dismantling is K-null; G
K-converges to a graph which is not trivial if and only if
its dismantling is Ck

n, with n > 3k; and G is K-divergent
otherwise. Next, we prove that a K-convergent CA graph
always K-converges to its dismantling. Furthermore, we
characterize the K-convergent CA graphs, which are not
K-null.

2 Main theorems

Our method to decide the K-behavior of CA graphs is
based on the two theorems below. The first of them
characterizes the dismantling of a circular-arc graph. We
conclude that the dismantling of a circular-arc graph is a
PCA graph and contains no dominated vertices. The sec-
ond theorem specifies exactly when does the dismantling
K-converge.

Theorem 1 ([9]). : Let G be a non-complete graph.
Then the following are equivalent:

(i) G is isomorphic to Ck
n for some pair of values n, k.

(ii) G is a PCA graph without dominated vertices.

(iii) G has a unique PCA model with arcs A1, . . . , An

where t(Ai) lies immediately after s(Ai+k).

(iv) G has a PCA model where every beginning point is
followed by an ending point.

Theorem 2 ([8]). : Graph Ck
n is K-convergent if and

only if it is complete or n > 3k.

These two theorems can be used to actually deciding
the K-behavior of a general CA graph. A circular-arc
graph isK-null if its dismantling isK-null; itK-converges
to a graph which is not K-null if its dismantling is Ck

n

with n > 3k; or it K-diverges otherwise. However, much
more can be said about the graph to whichGK-converges
when it does, because this graph is self-clique and thus
unique.

Theorem 3. A circular-arc graph G is K-convergent to a
non-trivial graph if and only if G is a non-interval HCA
graph admitting a model with no two arcs covering the
circle.

Finally, we characterize the graphs to which a circular-
arc graph K-converges, when it does.

Theorem 4. If a circular-arc graph K-converges then it
K-converges to its dismantling.
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vol. 260 of Colloques Internationaux C.N.R.S., 1978,
pp. 313–315.

A classification of defensive
alliances in 6-regular graphs

Gabriela Araujo-Pardo ∗

Instituto de Matemáticas.
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A defensive alliance is a set of vertices satisfying that
each vertex has at least as many neighbors in the alliance
(including itself) than neighbors not belonging to the al-
liance.

In a d-regular graph, a defensive alliance is a set of
vertices that induces a subgraph with minimum degree
at least �d

2� and maximum degree at most d. We are
interested in the following problem: which graphs can a
critical defensive alliance induce?

The answer is known for degree d ≤ 5. For 6-regular
graphs, it turns out to be complex. We study alliances in
graphs of degree 6, and of given cardinality k ≤ 8. Even
in these restricted cases, there is not an easy description
of such alliances.

Because of the complexity of the problem, in [1], we
restrict the problem to a family of very symmetric graphs,
the well known circulant graphs. In this paper we proved
that the alliance number in a circulant graph of degree 6
is at most 8 and we use the results exhibit in this work
to characterize all of them.

(3, 3, 3, 3, 3, 3)

(4, 4, 3, 3, 3, 3)

(5, 3, 3, 3, 3, 3)

C3�K2 K3,3

(C3�K2) + e K3,3 + e C4 + K2

W5

Figure 1: The graphs induced by critical defensive al-
liances of cardinality 6 in a 6-regular graph, with their
associated degree sequence.

The following definition is taken from [3].

Definition 1 (Defensive alliance). A non-empty set
S ⊆ V is a defensive alliance of G if, for every v ∈ S,

|NS [v]| ≥ |NS(v)|. (1)

There exists many kinds of alliances (see [2, 3]), in
this note we are only interested in defensive alliances.
We say that a defensive alliance is critical if none of its
proper subsets is a defensive alliance. In fact, the known
results for regular graphs of degree d ≤ 5 allow us to
completely characterize critical alliances for these graphs,
(for instance in [4] the authors study alliances in cubic
graphs):
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• If G is 1-regular, the critical alliances are exactly
the singletons.

• The critical alliances in a 2-regular or 3-regular graph
are exactly the edges.

• The critical alliances in a 4-regular or 5-regular graph
are exactly the induced cycles.

Given a d-regular graph, G, we are concerned in charac-
terize critical alliances in G, i.e., if S is a critical alliance
in G, which graphs could the subgraph of G induced by
S, 〈S〉, be isomorphic to? Unfortunately, there is no sim-
ple characterization of the alliances d-regular graphs if
d > 5. In this work we will concentrate on alliances of
given cardinality and d = 6.

(4, 3, 3, 3, 3, 3, 3) (4, 4, 4, 3, 3, 3, 3) (5, 4, 3, 3, 3, 3, 3) (6, 3, 3, 3, 3, 3, 3)

Figure 2: The graphs induced by critical defensive al-
liances of cardinality 7 in a 6-regular graphG. The arrows
indicate the subgraph relation.

Proposition 2. Let G be a 6-regular graph and S a crit-
ical defensive alliance of cardinality 6 of G then 〈S〉 is
one of the following graphs:

C3�K2, K3,3, (C3�K2) + e, K3,3 + e, C4 +K2, W5.

A representation of these graphs is given in Figure 1.

Proposition 3. Let G be a 6-regular graph and S a crit-
ical defensive alliance of cardinality 6 of G then 〈S〉 is
one of the 15 graphs in Figure 2.

If G is a 6-regular graph, the set of graphs that a
defensive alliance ofG of cardinality 8 can induce contains
exactly 65 graphs (in [1] appears a nice figure of all them).

We can easily extend the results to 7-regular graphs
because any critical defensive alliance in a 6-regular graph
is a critical defensive alliance in a 7-regular graph.
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Universidad Nacional Autónoma de México
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Una coloración ς : E → [k] de las aristas de una gráfica
G = (V,E) se dice que es completa si todo par de colores
es incidente en algún vertice; es decir, si para todo par
i, j ∈

(
k
2

)
existen aristas e, f ∈ E tales que e ∩ f �= ∅,

ς(e) = i y ς(f) = j. En particular, una coloración propia
con χ′(G) colores —el ı́ndice cromático de G— es nece-
sariamente una coloración completa.

El ı́ndice pseudoacromático de una gráfica G, deno-
tado aqui por ψ(G), es el máximo número de colores que
se pueden usar en una coloracón completa de las aristas
de G. Claramente, χ′(G) ≤ ψ(G).

En este trabajo estamos interesados en estimar el ı́ndi-
ce pseudoacromático de la gráfica completa y lo denotare-
mos por ψ(n) = ψ(Kn). En particular, podemos calcular
precisamente ψ(n + q + 1) siempre que n = q2 + q + 1 y
q = 2β .

Como podran adivinar algunos colegas, la expresión
n = q2 + q + 1 surge de la existencia de un plano proyec-
tivo finito. Es la estructura de ĺıneas del proyectivo Πq

—cualesquiera dos ĺıneas son incidentes— la que nos per-
mite exhibir una coloración completa... y es un milagro
que un par de cotas superiores para ψ(n), muy naturales
en este contexto, nos permitan demostrar que esas col-
oraciones son óptimas. Explicitamente, demostraremos
el siguiente

Teorema. Si q = 2β y n = q2 + q + 1, entonces

ψ(n+ q + 1) = q3 + 2q2 + 3q.

En la figura, se puede apreciar una coloración de las
aristas de K7 con 10 colores que se puede modificar y
extender a una coloración de K10 con 22 colores. Durante
la plática exhibiremos esta coloración en detalle.

Figura. Coloreando K7 con el plano de Fano Π2 como
patrón.
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In the present work we introduce a way of relating
any hypergraph with a simpler one, which keeps its edge-
structure but has often much less vertices. This allows us
to obtain results in several branches of hypergraph theory.
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Given a hypergraph H = (E1, ..., Em), its level-hyper-
graph is the result of identifying all vertices which belong
to exactly the same edges. This new hypergraph has the
same edge-structure as the original one, but may have less
vertices. The tool makes it possible to emulate known the-
orems regarding bounds for important numbers (like the
transversal number, the matching number, etc.) given
in terms of order or rank; the new results apply to dif-
ferent classes of hypergraphs and are stated in terms of
edge-structure.

Definition: Given a hypergraph H = (E1, ..., Em),
we define a partition P = {P1, ..., Pl} of V (H) in the
following way: {x, y} ⊂ V (H) is contained in an element
of P iff x and y belong to exactly the same edges ofH. We
call this the natural partition of V (H), and the partition
defined over each edge E ∈ H as {Pi ∈ P | Pi ⊂ E} is
the natural partition of E. The elements of P are called
levels of H, and the levels of H contained in an edge E
of H are called levels of E.

Definition: Given a hypergraph H = (E1, ..., Em)
with natural partition P = {P1, ..., Pl}, the level hyper-
graph LH = (E′

1, ..., E
′
m) of H is the hypergraph resulting

from deleting every vertex but one from each level Pi of
P . In other words, we consider a set S = {x1, ..., xl | xi ∈
Pi ∀i ∈ {1, ..., l}} and take LH = H[S]. It is clear that
LH is well defined, that is, it does not matter which vertex
from each level is kept, for all of them play an equivalent
role.

Since every edge E ofH has at least one vertex, it con-
tains at least one level, so it induces an edge E′ in LH ;
then both H and LH have the same number of edges. In
the same way, Ei and E′

i contain the same number of lev-
els and Ei ∩ Ej �= ∅ iff E′

i ∩ E′
j �= ∅. This implies that H

is simple iff LH is simple, and that H has repeated edges
iff LH does too.

Observe that every vertex belonging to a given level
Pi of H has the same degree, as well as the vertex cor-
responding to that level in LH . In particular, Δ(H) =
Δ(LH) and δ(H) = δ(LH).

Given an edge E of a hypergraph H, the correspond-
ing edge of LH will be called E′, and an edge of LH will al-
ways be written with an apostrophe. We will use the same
symbol for a level of H and its corresponding level in LH .
We consider V (LH) = {x1, ..., xl | xi ∈ Pi ∀i ∈ {1, ..., l}}
and call xi the representative of Pi.

LetH be a hypergraph andD(H) its dual hypergraph.
Then D(LH) is like D(H) without repeated edges. In-
deed, |H| = |LH | and for each vertex in V (H) there is a
vertex in V (LH) belonging to the same edges, so D(H)
and D(LH) have the same structure, but D(H) may have
more (repeated) edges. On the other hand, the only way
of generating repeated edges in D(H) is having two ver-
tices in the same level of H, so D(LH) has no repeated
edges.

Proposition 1: Let H be a hypergraph and let LH be
its level hypergraph. Then:

1. H is regular iff LH is regular.

2. H is regularisable iff LH is regularisable.

3. H is quasi-regularisable iff LH is quasi-regularisable.

In cases 2 and 3, the integer used to get the regular
hypergraph is the same for an edge in H and for the edge
it induces in LH .

Proposition 2: Let H be a hypergraph. H is balanced
(totally balanced) iff LH is balanced (totally balanced).

Proposition 3: Let H be a hypergraph. H is unimod-
ular (strongly unimodular) iff LH is unimodular (strongly
unimodular).

Now follow some theorems obtained from classical re-
sults using level hypergraphs. The original theorems are
marked with the symbol [∗].

Theorem 1’ [∗]: A hypergraph is balanced iff its in-
duced subhypergraphs are two colourable.

Theorem 1: A hypergraph H is balanced iff the in-
duced subhypergraphs of its level-hypergraph LH are two
colourable.

Proof: The theorem follows from Proposition 2 and
Theorem 1’. This result makes it easier to decide wether
a given hypergraph is balanced or not.

Theorem 2’ [∗]: A hypergraph of rank r ≤ 3 is uni-
modular iff it is balanced.

Theorem 2: A hypergraph such that every edge has
at most 3 levels is unimodular iff it is balanced.
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Proof: Let H be a hypergraph. If H is unimodular,
then it is balanced. Now suppose H is balanced and no
edge of H has more than three levels. Then LH is bal-
anced of rank r ≤ 3, so from Theorem 2’ it is unimodular.
Proposition 3 implies that H is unimodular.

Definition: Let H be a hypergraph. T ⊂ V (H) is a
transversal of H iff it meets all its edges. A transversal
T of H is minimal iff for every transversal T ′ of H, T ⊂
T ′ ⇒ T = T ′. A transversal T of H is minimum iff for
every transversal T ′ of H, |T | ≤ |T ′|. τ represents the
cardinality of a minimum transversal, and τ ′ represents
the maximum cardinality of a minimal transversal.

A transversal of LH is also a transversal of H, and a
transversal T ofH induces a transversal of LH by deleting
all vertices but one from Pi ∩ T for each level Pi such
that |Pi ∩ T | > 1. Moreover, a minimal transversal of
H has no more than one vertex per level, for two vertices
in the same level belong to exactly the same edges; on
the other hand, if an edge E′

i of LH is met by a given
set S ⊂ V (H), then the corresponding edge Ei of H is
met by S; it follows that every set T ⊂ V (H) is a minimal
(minimum) transversal ofH iff T is a minimal (minimum)
transversal of LH , taking T ∩Pi as xi, the representative
of Pi, whenever T ∩ Pi �= ∅. So we have τ ′(H) = τ ′(LH)
and τ(H) = τ(LH).

Definition: Let H be a hypergraph. A set S ⊂ V (H)
is strongly independent iff |S ∩ Ei| ≤ 1.

A strongly independent set S in LH is a strongly inde-
pendent set in H, since LH is an induced subhypergraph
of H. Conversely, a strongly independent set S in H
meets any level at most once, since it meets any edge at
most once. By taking S ∩ Pi as xi we have that S is a
strongly independent set in LH , for any edge E′

i ∈ LH and
any set A ⊂ V (H) satisfy |E′

i ∩A| ≥ 2 ⇒ |Ei ∩A| ≥ 2.
Notice that the concept of independence (S ⊂ V (H) is

independent iff there is no edge E ∈ H such that E ⊂ S)
does not translate well to level hypergraphs, since we may
have S ∩ P �= ∅ and (V (H) \ S) ∩ P �= ∅ for a given level
P of H.

Theorem 3’ [∗]: Let H be a balanced hypergraph.
Then H has a good k-colouring for every k ≥ 2.

Theorem 3”[∗]: Let H be a balanced hypergraph such
that |E| = r for every edge E ∈ H. Then V (H) may
be partitioned in r pairwise disjoint strongly independent
transversals.

Proof: This follows from Theorem 3’, since given a
good r-colouring every color class is a strongly indepen-
dent transversal.

Theorem 3: Let H be a balanced hypergraph such
that every edge E ∈ H has r′ levels. Then H has r′ pair-
wise disjoint strongly independent transversals.

Proof: From Proposition 2 we have that LH is a
balanced, uniform hypergraph of rank r′, so from The-
orem 3” LH has r′ pairwise disjoint strongly indepen-
dent transversals, which are as well strongly independent
transversals of H.

Definition: Let H be a hypergraph. A matching in H
is a set of pairwise disjoint edges of H, and ν(H) denotes
the maximum cardinality of a matching in H.

Since Ei ∩ Ej �= ∅ iff E′
i ∩ E′

j �= ∅, we have that
ν(H) = ν(LH).

Theorem 4’ [∗]: Let H = (E1, ..., Em) be a linear hy-
pergraph without repeated loops and let n = |V (H)|.
Then ν(H) ≥ m

n .

Theorem 4: Let H = (E1, ..., Em) be a level-linear hy-
pergraph without repeated one-level edges. Let n′ be the
total amount of levels in H. Then ν(H) ≥ m

n′ .

Proof: Let H be as asked. Then LH is a linear hy-
pergraph without repeated loops with n′ vertices and m
edges. The result follows from Theorem 4’.

Theorem 4 gives a better value than Theorem 4’, for
n′ ≤ n. It applies to a different class of hypergraphs:
linear is asking more than one-level intersections, but no
repeated loops is asking less than no repeated one-level
edges.

Theorem 5’ [∗]: Every regular r-uniform hypergraph
H such that |V (H)| = n satisfies

n

r2 − r + 1
≤ ν(H).

Theorem 5: Every simple regular hypergraph H with
n′ levels and such that every edge has r′ levels satisfies

n′

(r′)2 − r′ + 1
≤ ν(H).

Proof: Take H satisfying the conditions asked. Then
LH is a regular r′-uniform hypergraph with |V (LH)| =

n′, so from Theorem 5’
n′

(r′)2 − r′ + 1
≤ ν(LH) = ν(H).
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Tercer Taller Latinoamericano de Clanes en Gráficas

Those are some results obtained by means of level hy-
pergraphs. As we stated at the beginning, the tool is
useful for getting a theorem in terms of edge-structure
from one refering to rank or order, and allows as well
other kinds of results.

L-coloring bicolored 3-uniform
hypergraphs lists sized k with

2k − 1 colors

L. Faria∗ S. Gravier†

∗ Departamento de Matemática, FFP, UERJ.
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A hypergraph H is a non-empty collection E(H) of
nonempty finite sets called edges. The union of the edges
of E(H), denoted by V (H), is the set of vertices of H.
A hypergraph is r-uniform if each edge has cardinality
r. We say that L is a list of colors to H if L is a func-
tion that for each vertex v of V (H) defines a set L(v) of
colors. We say that H is L-colorable if it is possible to
color each vertex v ∈ V (H) with a color of L(v) in such
a way that no edge is contained in any color class. If L
is constant, |L(v)| = k, and H is L-colorable, then we say
that H is k–colorable, in this case if k = 2, then H is said
to be a bipartite hypergraph, and H is bicolored if it is
given a bipartition (V1, V2) for V (H) defined by 2 color
classes. Lovász [4] proved that is NP-complete deciding
whether a hypergraph H is 2-colorable. The hypergraph
H is called k−choosable if k is the smallest integer such
that, H is L-colorable for every list L, where L(v) has
size k, for every v ∈ V (H). The Πp

2 class [5] of prob-
lems consists of the decision problems which a certificate
to the answer Yes can be checked in polynomial time by
a non-deterministic Turing machine. Erdös, Rubin and
Taylor [3] exhibited a polynomial time algorithm to de-
cide whether a graph is 2–choosable, and proved that if
k ≥ 3, then deciding whether a graph is k−choosable is a
Πp

2-complete problem [5].

Recently, Dinur, Regev, and Smyth [2] proved that
given a positive integer k ≥ 2, and a 3-uniform bipartite
hypergraph H, it is NP-hard to color H with k or less
colors. Let k ≥ 2 be a positive integer, H = (V,E) be a 3-
uniform bipartite hypergraph, (V1, V2) be a bipartition for
the vertices of V and a list L, where∣∣∣∣

⋃
L(v)

v ∈ V

∣∣∣∣ ≤ 2k − 1, such that for each vertex v ∈ V ,

|L(v)| = k. In this article we prove that it is NP-complete
to decide whether H is L-colorable. Therefore, it is a Πp

2

problem to decide whether a bicolored 3-uniform hyper-
graph H is k−choosable, where k ≥ 2 and at most 2k− 1
colors are allowed. Let k be a positive integer. We con-
sider the decision problem:

k-list bicolored 3-uniform hypergraph (k-lb3uh)
instance: J = (Hk, V1, V2,L, p), where p ≥ k is a posi-
tive integer, Hk = (V,E) is a bipartite 3-uniform hyper-
graph, (V1, V2) a bipartition for V for which each edge of
E has a vertex of V1 and a vertex of V2, and a function
L:V −→P({1, 2, 3, . . . , p}), such that P({1, 2, 3, . . . , p}) is
the collection of subsets of {1, 2, 3, . . . , p}, and |L(v)| = k
is a list with k colors.

question: Is H L-colorable?

2-lb3uh is NP-complete with 2 = k ≤ p ≤ 3 =
2k − 1

First we describe the construction of a particular instance
J = (H2 = (V,E), V1, V2,L, 3) of 2–lb3uh from an in-
stance I = (U,C) of 3sat. The vertex set V contains
the set Vaux = {a1, a2, . . . , a16, b1, b2, . . . , b16}. For each
variable ui ∈ U , 1 ≤ i ≤ n, there are 2 vertices ui and ui,
belonging to V , corresponding to the literals of the vari-
able ui. For each clause cj = (x1 ∨ x2 ∨ x3), 1 ≤ j ≤ m,
there are 3 vertices cjx1, c

j
x2, c

j
x3, belonging to V , corre-

sponding to the literals x1, x2, and x3 of the clause cj .
The edge collection E is partitioned into the collec-

tions E1, E2, E3, E4, and E5:
E1 = {{ui, ūi, a1} , {ui, ūi, b1}, i ∈ {1, 2, 3, . . . , n}};
E2 =

{
{cjx1 , cjx2, c

j
x3}, {{a1, c

j
x1, c

j
x2}, {a1, c

j
x1, c

j
x3},

{a1, c
j
x2, c

j
x3}, for each cj = (x1 ∨x2 ∨ x3) ∈ C};

E3 = {{a4i+1, a4i+2, a4i+3}, {a4i+1, a4i+2, a4(i+1)},
{a4i+1, a4i+3, a4(i+1)}, {a4i+2, a4i+3, a4(i+1)},
{a4i+1, a4i, a4i−1}, {a4i+1, a4i, a4i−2},
{a4i+1, a4i−1, a4i−2}, i ∈ {0, 1, 2, 3}};

E4 = {{b4i+1, b4i+2, b4i+3}, {b4i+1, b4i+2, b4(i+1)},
{b4i+1, b4i+3, b4(i+1)}, {b4i+2, b4i+3, b4(i+1)},
{b4i+1, b4i, b4i−1}, {b4i+1, b4i, b4i−2},
{b4i+1, b4i−1, b4i−2}, i ∈ {0, 1, 2, 3}};
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The only part that depends on which literal xi oc-
curs in which clause cj is the collection of edges E5 ={
{cjxi, xi, a1}, if xi is a literal of the clause cj

}
. The list

L of colors satisfies L(a1) = L(a2) = L(a3) = L(a4) =
L(a9) = L(a14) = L(a15) = L(a16) = L(b6) = L(b7) =
L(b8) = L(b9) = L(b10) = L(b11) = L(b12) = [0, 2];
L(b1) = L(b2) = L(b3) = L(b4) = L(b9) = L(b13) =
L(b14) = L(b15) = L(b16) = L(a6) = L(a7) = L(a8) =
[1, 2]; If v is other vertex of H then, L(v) = [0, 1]. We
exhibit a bipartition to V (H) into 3 steps. In the first
step set vertices {a1 , a2, a5, a6, a9, a10, a13, a14, b1, b2,
b5, b6, b9, b10, b13, b14} to partition 1. In the second step,
for every clause c = (x∨ y∨ z) of C select vertices cjx and
cjy to partition 1 and cjz to partition 2. In the third step
set the remaining vertices of H to partition 2.

We prove that if H2 is L-colorable, then colors 0 and
1 are assigned, respectively, to vertices a1, and b1; We use
this fact to prove that there is a satisfiable truth assign-
ment for I = (U,C), if and only if H2 is L-colorable.

We offer in Figure 1 an example of construction of an
instance J = (H2, V1, V2,L, 3) of 2–lb3uh.
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Figure 1: Instance J = (H2, V1, V2,L, 3) of 2–lb3uh
obtained from the 3sat instance I = (U,C) =
({u1, u2, u3}, {(u1∨u2∨u3), (u1∨u2∨u3), (u1∨u2∨u3)}).

k–lb3uh is NP-complete, with 3 ≤ k ≤ p ≤
2k − 1

We use the NP-completeness of 2–lb3uh as induction ba-
sis to prove the general case that k–lb3uh is NP-complete
for k ≥ 3 and p ≤ 2k − 1.

First we consider the instance J = (H2 = (V,E),
V1, V2,L, 3) of 2–lb3uh obtained from the 3sat instance
I = (U,C). For the purpose of defining Hk, we describe
the list sized k bipartite hypergraph Ak(k−1) with 2k−1

colors. The property key of hypergraph Ak(k− 1) is that
it is L-colorable and for every L-coloring of Ak(k − 1), a
special vertex vk must be colored with color k−1. Hence,
we use induction in J = (Hk−1 = (V,E), V1, V2,L, 3)
and 2 copies of hypergraphs Ak(c) and Ak(c′) to take
the corresponding 4 vertices vk’s as universal vertices for
Hk−1, in the sense that there is an extra edge containing
each vertex of Hk−1 and each pair of the 4 vertices vk’s,
where c and c′ are two extra colors not used in the k − 1
sized lists of the induction step hypergraph Hk−1 to get
the general case of Hk. Since color c cannot be assigned
to the vertices of Hk−1, we increase with c the lists of
Hk−1 from size k− 1 to k, and the total number of colors
from 2(k − 1) − 1 to 2k − 1 by adding c, c′ to the set of
2(k − 1) − 1 colors.

Conclusions and open problems
We prove that for every k ≥ 2 the decision problem

k–lb3uh is NP-complete even for a fixed p ≤ 2k− 1. We
notice that k–lb3uh is a polynomial decision problem if
p = k, since one can assign in each list the color given by
the bipartition (V1, V2). We left as an open problem to
determine the minimum p, 2 ≤ k < p ≤ 2k − 1 such that
k–lb3uh is NP-complete.
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Un clan de una gráfica es una subgráfica completa
maximal. La gráfica de clanes K(G) es la gráfica de in-
tersección de todos los clanes de G. Se definen las gráficas
iteradas de clanes de manera recursiva: K0(G) = G
y Kn+1(G) = K(Kn(G)). Decimos que una gráfica es
clan-divergente si la sucesión de órdenes de sus gráficas
iteradas de clanes crece sin cota, caso contrario decimos
que es clan-convergente. El clan-comportamiento de una
gráfica G es clan-convergente o clan-divergente según lo
sea G. El clan-comportamiento ha sido estudiado en di-
versos trabajos, por ejemplo [21, 20, 3, 6, 7, 10, 19, 2, 5].
Las gráficas de clanes han sido consideradas para el estu-
dio de las Redes Sociales [8], la Propiedad del Punto Fijo
en órdenes Parciales [9] y han sido usadas en Gravitación
Cuántica [23]. Para amplia bibiliograf́ıa sobre gráficas
de clanes puede consultar [24, 22, 11]. Algunos trabajos
recientes se encuentran en [1, 17, 18, 4].

Una triangulación de Whitney de un espacio topoló-
gico X es una gráfica G tal que la realización geométrica
del complejo de completas de G es homeomorfa a X. En
el caso en que X es una superficie compacta (con o sin
frontera), es fácil ver que las triangulaciones de Whitney
son precisamente las gráficas en las que los vecinos de cada
vértice inducen una subgráfica isomorfa a algún ciclo (de
longitud al menos 4) o a alguna trayectoria (de longitud al
menos 2). Las triangulaciones de Whitney de superficies
cerradas (i.e. sin frontera) son aquellas en las que los
vecinos de cada vértice inducen una subgráfica isomorfa
a algún ciclo de longitud al menos 4.

Se sabe [14] que casi toda superficie cerrada admite
una triangulación clan-convergente (las posibles excep-
ciones son: la esfera, el plano proyectivo, el toro y la
botella de Klein). También se probó previamente [16] que
toda superficie cerrada admite una triangulación clan-
divergente. En el trabajo reportado en este resumen,
hemos generalizado estos estudios al caso de superficies
compactas (i.e. que pueden tener frontera). Los resulta-
dos obtenidos se presentan en los siguientes dos teoremas.

Teorema 1. Casi toda superficie compacta admite una
triangulación de Whitney clan-divergente; la única posible
excepción es el disco.

Teorema 2. Casi toda superficie compacta admite una
triangulación de Whitney clan-convergente; las únicas po-
sibles excepciones son: la esfera, el plano proyectivo, el
toro y la botella de Klein.

Para probar estos teoremas fue necesario usar la ma-
yoŕıa de las técnicas que han sido desarrolladas a la fecha
para determinar el clan-comportamiento: retracciones [21,
20], cubrimientos [12], relojes [15], gráficas rango-diver-
gentes [16] y gráficas con cuello local grande [13] además
de los resultados ya conocidos sobre la clan-convergencia
de triangulaciones de superficies cerradas [14].

Estas técnicas, sin embargo, no bastan para construir
una triangulación clan-divergente del disco, ni bastan para
construir triangulaciones clan-convergentes para la esfera,
el plano proyectivo, el toro y la botella de Klein. Esto
viene a reforzar las ideas de que ni el disco admite trian-
gulaciones clan-divergentes, ni la esfera admite triangu-
laciones clan-convergentes, ideas que ya han sido presen-
tadas como conjeturas en [13].
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1 Introduction

Many problems in graphs, such as coloring and cover-
ing problems, can be seen as partition problems. We
consider the problem of verifying whether the vertex set
of a given graph G can be partitioned into k indepen-
dent sets and l cliques, known as the (k, l)-partition prob-
lem. Graphs that can be partitioned in this way are
called (k, l)-graphs, and were introduced by Brandstädt in
[1]. The (k, l)-partition problem generalizes the k-coloring
problem, which corresponds to checking whether a given
graph G is a (k, 0)-graph. Brandstädt proved that for
k ≥ 3 or l ≥ 3 the problem of recognizing (k, l)-graphs
is NP -complete. Since then, many papers have been de-
voted to the study of special families of (k, l)-graphs, such
as chordal (k, l)-graphs. In [10], a characterization of
chordal (k, l)-graphs and a polynomial-time recognition
algorithm for this family are given. Perfect (k, l)-graphs
are studied in [6]. A generalization of the (k, l)-partition
problem named M -partition problem [8, 9], besides al-
lowing internal restrictions in the definition of the parts
(such as being an independent set or a clique), also in-
troduces external restrictions involving the parts (such
as being completely linked by edges, or completely iso-
lated). A common way of characterizing the existence
of partitions is via the absence of finitely describable ob-
structions. We provide such a characterization for the
family of (k, l)-cographs, cographs that are (k, l)-graphs.

24
Octubre 2008, Guanajuato, Gto., México
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The problem of partitioning a cograph into independent
sets and cliques has also been investigated in other as-
pects in [4, 5, 6, 7]. We extend the result presented in [4],
which caracterizes (2, 1)-cographs and (2, 2)-cographs in
terms of obstructions.

Given a simple graph G = (V,E), we denote by G the
complement of G. For V ′ ⊆ V , G[V ′] denotes the sub-
graph of G induced by V ′. A clique (independent set) is
a subset of vertices inducing a complete (edgeless) sub-
graph, not necessarily maximal. G is a (k, l)-graph if V
can be partitioned into k independent sets and l cliques.
For a (k, l)-graph G, we write V = S1∪. . .∪Sk∪C1∪. . .∪
Cl, where each Sj is an independent set and each Ci is a
clique. It is worth mentioning that in the above definition
some sets may be empty. Such a partition is called a (k, l)-
partition of G. The complete (resp. edgeless) graph on r
vertices is denoted by Kr (resp. Ir). Given two graphs
G1 = (V1, E1) and G2 = (V2, E2), the graph G1 ∪ G2

(called the union of G1 and G2) is the graph with vertex
set V1 ∪ V2 and edge set E1 ∪E2, and the graph G1 +G2

(called the join of G1 and G2) is the graph with vertex set
V1∪V2 and edge set E1∪E2∪{(x, y) | x ∈ V1, y ∈ V2}. A
cograph G is a graph which contains no P4 (a path with
four vertices). Cographs have many properties which are
useful to characterize and recognize (k, l)-cographs. One
of them is the auto-complementarity: G is a (k, l)-cograph
if and only if G is an (l, k)-cograph. Lerchs [11] showed
how to associate a cograph G with a unique tree T (G)
called the cotree of G, defined as follows:

- If G is not trivial then every internal node of T (G)
has at least two children.

- Internal nodes are labelled 0 (0-nodes) or 1 (1-nodes)
in such a way that 0-nodes and 1-nodes alternate
along every path in T (G) starting at the root.

- Leaves of T (G) are precisely the vertices of G, such
that vertices x and y are adjacent in G if and only
if the lowest common ancestor of x and y in T (G)
is a 1-node.

The following definition will be useful in order to char-
acterize (k, l)-cographs. Denote by F(a, b) (a, b > 0) the
family of cographs such that each member G ∈ F(a, b)
satisfies the following properties:

- |V (G)| = ab;

- G contains a disjoint cliques, each of size b;

- G contains b disjoint independent sets, each of size
a.

A simple way of representing a member G ∈ F(a, b) is by
means of a matrix called (a, b)-template, defined as fol-
lows. Let M be an a× b matrix of points. Each row of M
represents a clique of size b, and each column of M repre-
sents an independent set of size a. There are two types of
(a, b)-templates: (a, b)-union templates (representing dis-
connected members of F(a, b)) and (a, b)-join templates
(representing connected members of F(a, b)), recursively
defined as follows:

- M is an (a, b)-union template if either b = 1 or b > 1
and there are p− 1 horizontal lines dividing M into
p sub-matrices M1,M2, . . . ,Mp such that each Mi

is an (ai, b)-join template, ai > 0.

- M is an (a, b)-join template if either a = 1 or a > 1
and there are q − 1 vertical lines dividing M into q
sub-matrices M1,M2, . . . ,Mq such that each Mi is
an (a, bi)-join template, bi > 0.

K3 ∪ K3 ∪ K3

I3 + I3 + I3

K3 ∪ (I2 + I2 + I2)

I3 + (K2 ∪ K2 ∪ K2)

K3 ∪ [I2 + (K2 ∪ K2)]

I3 + [K2 ∪ (I2 + I2)]

Figure 1: The family of (3, 3)-templates and correspond-
ing cographs.

Figure 1 shows the (3, 3)-templates. Given an (a, b)-
template M , the associated cograph GM is easily ob-
tained as follows. Each point represents a vertex of GM .
If M is a union template and b = 1 then the a points
represent Ia, otherwise the sub-matrices M1,M2, . . . ,Mp

represent connected components of GM . Similarly, if M
is a join template and a = 1 then the b points repre-
sent Kb, otherwise the sub-matrices M1,M2, . . . ,Mq rep-
resent connected components of GM . Figure 1 shows the
cographs associated with the (3, 3)-templates.

2 Main results

The following proposition relates F(a, b) and the (a, b)-
templates.
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Proposition 1. A graph G is a member of F(a, b) if
and only if there exists an (a, b)-template M such that
G = GM .

Proof. Let G ∈ F(a, b). Let us show, by induction on the
height h(T (G)) of T (G), how to define an (a, b)-template
M such that G = GM . If h(T (G)) = 0 then choose M as
the (1, 1)-template. If h(T (G)) = 1 and the root of TG is
a 0-node, i.e., G is disconnected, then G = Ia and M is
chosen as the (a, 1)-union template; otherwise, if the root
of T (G) is a 1-node, then G = Kb and M is chosen as
the (1, b)-join template. Assume now that h(T (G)) ≥ 2
and the root of TG is a 1-node. Let G1, G2, . . . , Gp be
the children of the root. Since G contains b disjoint Ia’s,
each Gi, 1 ≤ i ≤ p, contains bi disjoint Ia’s in such a
way that b1 + b2 + · · · + bp = b. By induction, each Gi is
associated with an (a, bi)-union template Mi. Therefore,
G is associated with the (a, b)-join template

M1 M2 · · · Mq.

We use a similar argument, if the root of T (G) is a 0-node.
Conversely, if G = GM for some (a, b)-template, then
|V (G)| = ab and G contains a disjoint cliques of size b
and b disjoint independent sets of size a, i.e., G ∈ F(a, b).
This completes the proof.

Having described the family F(a, b), let us show how
to use it in order to characterize (k, l)-cographs. We start
with the following lemma.

Lemma 2. [2] Let G be a cograph and S∗ a maximum
independent set of G. If G[V \S∗] contains Kr as a sub-
graph then G contains Kr+1 as a subgraph.

The following lemma, proved in [4], will be useful to
prove the characterization of (k, l)-cographs.

Lemma 3. [4] A graph G is a cograph if and only if for
every V ′ ⊆ V (G) the following property holds: if G[V ′] is
a (k, l)-graph with k > 0 and S’ is a maximum indepen-
dent set of G[V ′] then G[V ′\S′] is a (k − 1, l)-graph.

Theorem 4. [2] A cograph G is a (k, l)-graph if and only
if it contains no member of F(l+ 1, k + 1) as an induced
subgraph.

Proof. The proof is done by induction on the sum p+ k.
For the lack of space, the proof is omitted.

3 Conclusion

From lemma 3 we have a linear time algorithm for rec-
ognizing (k, l)-cographs. We can extend the family of
forbidden subgraphs for P4-sparse graphs.
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A {0,1}-matrix is balanced if it has no square sub-
matrix of odd order with exactly two 1’s per row and
per column. A graph is balanced if its clique-vertex in-
cidence matrix is balanced. Balanced matrices are per-
fect and, accordingly, balanced graphs are perfect. Few
years ago, perfect graphs were characterized by minimal
forbidden induced subgraphs. There is a characteriza-
tion of balanced graphs by forbidden induced subgraphs,
but this characterization is not by minimal forbidden in-
duced subgraphs. We present some characterizations of
balanced graphs by minimal forbidden induced subgraphs
restricted to graphs that belong to any of the following
classes: P4-sparse graphs, line graphs and their comple-
ments, and Helly circular-arc (HCA) graphs.

Keywords: balanced graphs, HCA graphs, line graphs,
P4-sparse graphs

1 Introduction

A clique is a maximal complete subgraph of a graph.
Berge defined balanced matrices as those {0,1}-matrices
not having a square submatrix of odd order with exactly
two 1’s per row and per column. Balanced matrices play a
remarkable role on combinatorial optimization. Given an
enumeration Q1, . . . , Qk of the cliques and v1, . . . , vn of
the vertices of a graphG, the k×n {0,1}-matrix A = (aij),
where aij = 1 iff vj ∈ Qi, is a clique-matrix of G. A graph
G is balanced if its clique-matrix is balanced [4]. Balanced
graphs constitute a subclass of the famous class of perfect
graphs [3, 5].

We denote the chordless cycle (resp. path) on n ver-
tices by Cn (resp. Pn). G denotes the complement of G.
A hole is an induced Ck for some k ≥ 5. Figure 1 shows
some small graphs. Let G1 and G2 be two graphs and
assume that V (G1)∩ V (G2) = ∅. The join of G1 and G2

is the graph G1 +G2 with vertex set V (G1)∪ V (G2) and
edge set E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}.

Figure 1: Some small graphs

Hoàng [7] defined P4-sparse graphs as those graphs
such that every set of five vertices induces at most one P4.
These graphs are a natural generalization of cographs and
they are also perfect. A spider is a graph whose vertex
set can be partitioned into three sets S, C and R, where
S = {s1, . . . , sk} (k ≥ 2) is a stable set; C = {c1, . . . , ck}
is a complete set; si is adjacent to cj iff i = j (a thin
spider), or si is adjacent to cj iff i �= j (a thick spider); R
is allowed to be empty and if it is not, then all the vertices
in R are adjacent to all the vertices in C and nonadjacent
to all the vertices in S. If G is a P4-sparse graph then G
or G is disconnected, or G is a spider [7].

Given a graph R, the line graph L(R) of R is the graph
whose vertices are the edges of R, two edges of R being
adjacent iff they share an endpoint. The graph G is a line
graph if it is isomorphic to L(R) for some graph R.

A graph is a circular-arc graph if it is the intersection
graph of a family of open arcs of a circle. Such a family
of arcs is called a circular-arc model of the graph. A
Helly circular-arc (HCA) graph is a circular-arc graph
that has a circular-arc model satisfying the Helly property
(i.e. any subfamily of pairwise intersecting arcs has a
nonempty intersection).

Few years ago, perfect graphs were characterized by
minimal forbidden induced subgraphs: they are exactly
the graphs without odd holes and their complements [2].
In [1], a forbidden induced subgraphs characterization of
balanced graphs was given, but it was not by minimal for-
bidden induced subgraphs. A graph is a minimal forbid-
den induced subgraph for the class of balanced (or simply,
minimally not balanced) if it is not balanced but all its
proper induced subgraphs are. In Section 2, we present
minimal forbidden induced subgraphs characterizations
of balanced graphs restricted to graphs that belong to
any of the following graph classes: P4-sparse graphs, line
graphs and their complements, and HCA graphs.

2 Partial characterizations

The class of trivially perfect graphs was defined by M.
Golumbic in [6]. He also showed that it coincides with
the class of {C4, P4}-free graphs.
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Lemma 1. Let G = G1 +G2. Then G is balanced if and
only if at least one of the following statements holds: (i)
At least one of G1 and G2 is a complete, and the other is
balanced; (ii) G1 and G2 are both trivially perfect.

Sketch of the proof. It is easy to see that the join of
a complete and a balanced graph is balanced. On the
other hand, the join of 2K1 and P4 (resp. C4) is the 2-
pyramid (resp. 3-pyramid), so if one of G1 and G2 is not
a complete, the other one must be trivially perfect. The
main part of the proof consists on proving that the join
of two trivially perfect graphs is balanced. �

Now we are in position to characterize those P4-sparse
balanced graphs.

Theorem 2. Let G be a P4-sparse graph. Then G is
balanced if and only if G contains no induced 0-, 2-, or
3-pyramid.

Sketch of the proof. Let H be P4-sparse graph that is
minimally not balanced. If H is disconnected then, by
Lemma 1, we can conclude that H is 2- or 3-pyramid. If
H is connected then, since by minimality H is connected,
H is a spider. If we assume that H is a thin spider, we
reach a contradiction by inspection of its clique-matrix.
So H is a thick spider. Therefore H contains an induced
0-pyramid and by minimality H is 0-pyramid, contradic-
tion. �

The results obtained for line graphs and their comple-
ments and for HCA graphs are the following. We omit
the proofs due to space limitations.

Theorem 3. Let G be a line graph. Then G is balanced if
and only if G has no odd holes and it contains no induced
0-pyramid, 1-pyramid, or 3-pyramid.

Theorem 4. Let G be the complement of a line graph.
Then G is balanced if and only if G contains no induced
0-, 2-, 3-pyramid, C5, C7, T7, or 2-paw.

Let t ≥ 1. For each p even such that 2 ≤
p ≤ 2t, we define the graph V 2t+1

p whose vertex set is
{v1, v2, . . . , v2t+1, u1, u2}, v1v2 . . . v2t+1 is a cycle whose
only chord is v1v3, N(u1) = {v1, v2} and N(u2)
= {v2, v3, . . . , vp+1}. We define the graph D2t+1 whose
vertex set is {v1, v2, . . . , v2t+1, u1, u2, u3} such that
v1v2 . . . v2t+1 is a cycle whose only chords are v2t+1v2
and v1v3, N(u1) = {v2t+1, v1}, N(u2) = {v2, v3} and
N(u3) = {v1, v2}. For each p even such that 4 ≤
p ≤ 2t, we define the graph X2t+1

p whose vertex set is
{v1, v2, . . . , v2t+1,u1, u2, u3, u4} such that v1v2 . . . v2t+1 is
a cycle whose only chords are v2t+1v2 and v1v3,
N(u1) = {v2t+1, v1}, N(u2) = {v2, v3, u4}, N(u3) =
{v2t+1, v1, v2, u4}, N(u4) = {v1, v2, v3, . . . , vp, u2, u3}.

Theorem 5. Let G be a HCA graph. Then G is balanced
if and only if G has no odd holes and contains no induced
0-, 1-, 2-pyramid, C7, V 2t+1

p , D2t+1, or X2t+1
p for any

t ≥ 1 and any valid p.

Acknowledgements: Partially supported by UBACyT
Grants X606 and X069 (Argentina). Second author acknowl-
edges FONDECyT Grant 1080286 (Chile) and Millennium
Science Institute “Complex Engineering Systems” (Chile).

References

[1] F. Bonomo, G. Durán, M. Lin, and J. Szwarcfiter. On
balanced graphs. Math. Program., 105:233–250, 2006.

[2] M. Chudnovsky, N. Robertson, P. Seymour, and
R. Thomas. The Strong Perfect Graph Theorem. Ann.
Math., 164:51–229, 2006.
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An interval graph is the intersection graph of a family
of intervals of the real line, called an interval model. An
order P = (X,≺) is an interval order if P can be as-
sociated to an interval model R = {Ix | x ∈ X} such
that x ≺ y if and only if Ix is entirely to the left of Iy.
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The interest in interval graphs and orders comes from
both their central role in many applications and purely
theoretical questions [2]. We consider the problem of com-
puting, for some given graph G, the least amount of inter-
val lengths for an interval model of G, named the interval
count problem [3, 2]
Let IC(R) denote the number of distinct lengths of the in-
terval model R. The interval count of an interval order P
is the least number IC(P ) of interval lengths for an inter-
val model of P , i.e., IC(P ) = min{IC(R) | R is an inter-
val model of P}. Similarly, the interval count of an inter-
val graph G is the least number IC(G) of interval lengths
for an interval model of G, i.e., IC(G) = min{IC(R) | R
is an interval model of G}. The problem of computing
either IC(P ) or IC(G) is called the interval count prob-
lem. It is not known currently whether the problem is
NP-complete. In what follows, all graphs considered are
interval graphs. Denote the left and right extreme points
of an interval I by �(I) and r(I), respectively. For conve-
nience, we may use the concepts of vertex and its corre-
sponding interval interchangebly.
Deciding whether IC(G) = 1 for a given graph G is equiv-
alent to recognizing whether G is a unit interval graph.
The latter problem is well-studied and there are several ef-
ficient solutions to it, including linear-time algorithms [1].
In fact, IC(G) = 1 if and only if G is claw-free. However,
given a graph G (order P ) and some fixed integer k ≥ 2,
deciding efficiently whether IC(G) = k (IC(P ) = k) is
an open problem.
We consider the constraint in which is assumed the inter-
vals have their extreme points represented by integers and
we ask whether the interval count of a graph (order) is af-
fected. It is usual to assume such a property without loss
of generality in most of the problems related to interval
graphs. However, regarding to the interval count prob-
lem, this question should be analyzed carefully. A slightly
change in any extreme point of some interval (which is the
basic operation to transform interval models) affects the
length of that interval, therefore potentially affecting the
number of distinct lengths. We show that in fact such
a property does not affect the interval count of a graph
(order). This result is formally stated next.

Theorem 1. Let P be an interval order. Then, there
exists an interval model R of P with IC(R) = IC(P ) in
which all extreme points are distinct integers.

Corollary 2. Let G be an interval graph. Then, there
exists an interval model R of G with IC(R) = IC(G) in
which all extreme points are distinct integers.

Note that the results stated in Theorem 1 and Corollary 2
do not provide any insight into the problem of deciding
whether IC(G) = k (IC(P ) = k) running a combinatorial
algorithm whose worst case time complexity depends only
on the size of the input, namely G (P ) and k. To address
this issue, the next straightforward lemma is used as a
basis to design such an algorithm.

Lemma 3. Let P = (X,≺) be an interval order and
k ≥ 1 be an integer. Then, IC(P ) = k if and only if
k is the least integer for which there exists a partition
S1 ∪ · · · ∪ Sk of X and an interval model {Ix | x ∈ X}
of P such that |Ix| = |Iy| ⇐⇒ {x, y} ⊆ Si for some
1 ≤ i ≤ k.

Let P = (X,≺) be an interval order and S = S1∪· · ·∪Sk

be a partition of X. Let (GS) be the linear programming
instance defined below, where δ > 0 and ε > 0 are con-
stants, �x, rx, si are variables for all x ∈ X and 1 ≤ i ≤ k,
and F (P ) is a linear objective function on such variables.

(GS): min F (P ) (2)

s.t.

rx − �x = si , for all x ∈ Si, 1 ≤ i ≤ k (3)

si + δ ≤ si+1 , for all 1 ≤ i < k (4)

rx + ε ≤ �y , for all x ≺ y (5)

�y + ε ≤ rx , for all x ‖ y (6)

�x, rx ≥ ε , for all x ∈ X (7)

s1 ≥ ε (8)

Theorem 4. Let P = (X,≺) be an interval order and
k ≥ 1. Then, it is possible to decide whether IC(P ) = k
running a combinatorial algorithm whose worst case time
complexity depends only on the sizes of P and k.

Proof. By Theorem 1, it is clear that GS is feasible if and
only if there exists an interval model R = {Ix | x ∈ X}
of P such that �x = �(Ix), rx = r(Ix) for each x ∈ X,
and |Ix| = |Iy| ⇐⇒ {x, y} ⊆ Si for some 1 ≤ i ≤ k.
Therefore, by Lemma 3, IC(P ) = k if and only if k is
the least for which GS is feasible for some partition S =
S1 ∪ · · · ∪ Sk of X.

It is straightforward to obtain the counterpart of Theo-
rem 4 for graphs. These results emphasize the combina-
torial aspects of the interval count problem, which may
not be much clear at first glance, since interval extremes
vary continuously on the real line.
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We also address a very different question: an extremal
problem concerning the interval count. Let f(q) be the
function which associates the maximum possible interval
count for a graph with q maximal cliques, i.e., f(q) =
max{IC(G) | q(G) = q}, where q(G) is the number of
maximal cliques of G.

Theorem 5. f(q) = �(q + 1)/2�, for all q ≥ 1.

Proof. (Sketch) The result is clear when q ≤ 2, since such
a graph is claw-free. Assume q > 2.
Let Gi, i ≥ 1, be the graph defined schematically in the
figure (left part). The fancy edges (ui,Hi−1) mean that
the vertex ui is adjacent to all vertices of the induced
subgraph Hi−1.

For each i ≥ 1, the number of maximal cliques of Gi can
be easily worked out as being q(Gi) = 2i+ 1. Moreover,
for any interval model {Iv | v ∈ V (Gi)} of Gi, |Iuk

| >
|Iuk−1 | for every 1 ≤ k ≤ i. Thus, IC(Gi) ≥ i + 1. As a
matter of fact, IC(Gi) = i+ 1 as testified by the interval
model of Gi depicted in the figure (right part).
Let G be either the graph G(q−1)/2 if q is odd or the graph
G(q−2)/2 plus an isolated vertex, otherwise. Therefore,
f(q) ≥ IC(G) = �(q + 1)/2�.
On the other hand, let G be a graph with q maximal
cliques. We show an upper bound for f(q) by designing
an algorithm which builds an interval model R of G such
that IC(R) ≤ �(q + 1)/2�. Since G is a general graph
with q maximal cliques, then f(q) ≤ �(q + 1)/2�.
Let C1, . . . , Cq be the maximal cliques read from left to
the right of some interval model of G and let m =
�(q + 1)/2�. Initially, assume all intervals in the cliques
Cm or Cm+1 are unit length. Then, on each step i =
1, . . . ,m − 1, move every left extreme point of the inter-
vals in Cm−i ∩ Cm−i+1 to the left and move every right
extreme point of the intervals in Cm+i ∩ Cm+i+1 to the
right in a manner that the following two conditions hold:
(i) the modified intervals have the greatest length and
(ii) there exist two points p1 < p2 such that the set of
intervals which contain p1 is Cm−i ∩ Cm−i+1 and p2 is
Cm+i ∩ Cm+i+1. For each v ∈ Cm−i \ Cm−i+1, add Iv
such that |Iv| = 1 and r(Iv) = p1. Symmetrically, for
each v ∈ Cm+i+1 \ Cm+i, add Iv such that |Iv| = 1 and
�(Iv) = p2. In each iteration clearly at most one new
interval length is added. Therefore, IC(G) ≤ IC(R) ≤
(m− 1) + 1 = �(q + 1)/2�.

References

[1] D. G. Corneil. A simple 3-sweep LBFS algorithm for
the recognition of unit interval graphs. Discrete Appl.
Math., 138(3):371–379, 2004.

[2] P. C. Fishburn. Interval Orders and Interval Graphs.
John Wiley & Sons, 1985.

[3] R. Leibowitz, S. F. Assmann, and G. W. Peck. The
interval count of a graph. SIAM J. Algebraic and
Discrete Methods, 3(4):485–494, 1982.

Surface triangulations and a large
family of no dismantleable k-null

graphs

M.E. Fŕıas-Armenta

Universidad de Sonora.
Hermosillo México

Abstract

We show a large class of graphs k-null that are not dis-
mantleable and include a infinity family of Whitney tri-
angulations of disk. Keywords: clique graphs, Whitney
triagulations, k-null, k-convegent.

1 Introduction

Our graphs are simple, finite and connected. Making a
noun out of an adjective we shall refer to complete sub-
graphs just as completes. We shall identify a induced
subgraph (hences completes) and their vertices set. A
clique of a graph is a maximal complete. The clique
graph of a graph G is the intersection graph k(G) of the
set of all cliques of G. Iterated clique graphs kn(G) are
defined by k0(G) = G and kn+1(G) = k(kn(G)). We
say that G is k-null if kn(G) is the trivial (i.e. one-
vertex) graph for some n ≥ 0. More generally, if there
are m and n with m �= n such that km(G) ∼= kn(G), we
say that G is k-convergent. It is easy to see that if G
is not k-convergent then the sequence of orders |kn(G)|
tends to infinity, in this case we say that G is k-divergent.
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We will distinguish this three k-behaviors. The first exam-
ples of large families of this three distinct k-behavior are
in [4], [1] and [7]. The open neighborhood of x ∈ V (G) is
NG(x) = {y ∈ G|xy ∈ E(G)}. The closed neighborhood
is N [x] = N(x)

⋃
{x}. Given x, y ∈ V (G) if closed neigh-

borhood of x is subset of closed neighborhood of y we
say that x is dominated by y, and we say that x is dom-
inated if x is dominated by some else, this concept was
introduced by Escalante [1]. In [2] was proved that erase
dominated vertex do not change the k-behavior. We say
that graph G is dismantleable if we eliminate dominated
vertex one by one we obtain the one-vertex graph, Prisner
[8] proved that dismantleable graphs are k-null. I If T is
a triangulation (simplicial descomposition) of a compact
surface X and G is the underlying graph (1-skeleton) of
T. We call T a Whitney triangulation if any face of T
is a triangule of G. We do not distinguish between T
and G. Larrión, Neumann-Lara and Pizaña in [5] and [6]
was conjectured that every Whitney triangulation of the
disk is k-null, we will call this, the disk conjeture; partic-
ulary in [5] has been proved that a disk, which interior
vertices have at least six degree, always has a dominated
vertex in the border then the disk is dismantliable and
therefore it is k-null. In the literature there are not ex-
amples of a large family of k-null graphs that are not
dismantleable. In this paper (section 2 ) we show a large
family of k-null graphs no dismantleables that include the
Whithney triagulation of a familie of disks with arbitrary
radio. This is one more step to prove the disk conjetura.
For more notation or basic definitions see [3].

2 Crowns

We write G
#→ H, if there is H ′ subgraph of G such that

H ∼= H ′ and for each x ∈ V (G) − V (H ′) there is y ∈
V (H ′) such that x is dominated by y. We write G

#� H

if there are {Gi}n
i=0 such that G ∼= G0

#→ G1
#→ G2

#→ ...
#→ Gn

∼= H. In [2] is proved the next theorem.

Theorem 1. [2]. Let G and H be a graphs. If G
#→ H

then k(G)
#→ k(H)

Definition 2. We say that a graph H ′ is a coronation of
a graph H and if there are completes q1, q2, ..., qm in H
such that:

1. m ≥ 4.

2. qi ∩ qi+1 have one and only one vertex.

Figure 1:

3. qi ∩ qj = ∅ when j /∈ {i− 1, i, i+ 1}.

4. H ′ ∼= H ′′ where V (H ′′) = V (H)∪V (Cm), E(H ′′) =
E(H)∪E(Cm)∪{{x, vi} : x ∈ qi, vi ∈ Cm, para i =
1, 2, ...,m} and where Cm is cycle of m vertices
v1, v2, ..., vm.

We will name Cm ∪ ∪m
i=1qi crown of H. The vertices of

Cm we will call them exterior vertices of the crown. The
vertices of ∪m

i=1qi we will call them interior vertices of the
crown. If H ′ is a coronation of H we write H ′ �→ H and
too we say that H ′ crown H.

Theorem 3. Let H ′ and H graphs such that H ′ �→ H

then k(H ′)
#� k(H) or there is graph G such that k(H ′)

#→
G

�→ k(H)

proof:If k(H ′)
#� k(H) we have finished. If not, let ri =

{Q ∈ k(H) : qi ∩ qi+1 ⊆ Q} for i = 1, 2, ...,m. The r1,
r2, ..., rm play the role of q1, q2, ..., qm of definition 2.
Let G = Ω({Q ∈ k(H)} ∪ {{vi, vi+1} ∪ (qi ∩ qi+1) : i =

1, 2, ...,m}). Obviously G �→ k(H) or G
#� k(H). We can

see that k(H ′) ∼= Ω({Q ∈ k(H) : Q �= qi, i = 1, 2, ...,m}∪
{qi ∪ {vi} : i = 1, 2, ...,m} ∪ {{vi, vi+1} ∪ (qi ∩ qi+1) : i =
1, 2, ...,m}), when qi is not a clique in H let Qi a clique
of H such that qi ⊆ Qi then qi∪{vi} is dominated by Qi,

and so k(H ′)
#→ G. �
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Theorem 4. Let H ′ and H graphs such that H ′ �→ H
and such that H is k-null then H ′ is k-null.

proof: Let n such that kn(H) = K1 then by aplying the

theorem 3 and theorem 1 n times, we have that kn(H ′)
#�

kn(H) = K1 then by theorem of dismantlings of [8] we
have the result. �

Example 5. If we start with wheel. Then we crown many
times; in each step we take the exterior vertices of the
last step how new interior vertices, in such way, we have
always a disk. And then we obtain a underlaying graph
G that is Whitney triangulation of disk. Adicionally G is
k-null by theorem 4 and G is not dismantliable. See figure
1.
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1 Introduction

A convexity over a non-empty set X is a family C of sub-
sets of X, called convex sets, such that ∅,X ∈ C and C
is closed under intersections and nested unions [5, 6]. In
graphs, the most studied convexities use particular kind
of paths to define the convex sets. For example, given a
set of paths P of a graph G, a set S is P-convex if, for
every pair of vertices u, v ∈ S, every path from u to v
belonging to P contains only vertices of S.
In this work we deal with the monophonic convexity, where
P is formed by all minimal paths, that is, all induced
paths of the graph. Then, we say that a set S is mono-
phonically convex, or simply m-convex, if all induced paths
between two vertices of S are contained in S.
Given a set S, the minimum set containing S which is
m-convex is called the m-convex hull of S, and is denoted
by Jh[S]; and the set J [S] containing all induced paths
among the vertices of S is the monophonic interval of S.
It is clear that S ⊆ J [S] ⊆ Jh[S]. It is also clear that one
can compute the m-convex hull of a set S, by repeatedly
applying the monophonic interval, until obtaining an m-
covex set.
Given a graph G, the m-convexity number of G, cm(G),
is the cardinality of a maximum m-convex set S � V (G);
the monophonic number of G, m(G), is the cardinality
of a minimum set S such that J [S] = V (G); and the
monophonic hull number of G, hm(G), is the cardinality
of a minimum set S such that Jh[S] = V (G).

3Partially supported by the Conselho Nacional de Desenvolvi-
mento Cientfico e Tecnolgico - CNPq, and Fundao de Amparo
Pesquisa do Estado do Rio de Janeiro - FAPERJ, Brazil.
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Another widely studied convexity is the geodesic convex-
ity, where P is formed by all shortest paths of the graph.
The parameters in this convexity, corresponding to the
monophonic convexity number, monophonic number and
monophonic hull number are the geodesic convexity num-
ber, geodetic number and geodesic hull number. It is
known that it is NP-hard to compute these parameters
for the geodesic convexity [1, 2, 3, 7].
In the monophonic convexity, deciding whether the m-
convexity number of a graph is greater than an integer k,
and whether the monophonic number is less than an in-
teger k are NP-complete problems for general graphs [4].
Furthermore, computing the monophonic interval of a
set is also computationally hard [4]. From these results,
it was expected that deciding whether the monophonic
hull number of a general graph is less than an integer k
was an NP-complete problem. However, we propose a
polynomial-time algorithm for finding a minimum mono-
phonic hull set of a graph G in time O(nm), where n is
the number of vertices and m the number of edges of G.
The algorithm is based on clique decomposition.

2 The algorithm

Given a connected graph G, a set C ⊆ V (G) is a clique
separator of G if C is a complete set and G− C is a dis-
connected graph. We say that G is an atom if G contains
no clique separator. A (clique) decomposition tree T of a
connected graph G is recursively defined as being a rooted
tree such that:

1. G is an atom and T consists of a sole node associ-
ated to G, or

2. G has a clique separator C. In this case, the root of
T is associated to C, and the connected components
of G− C are partitioned into p > 1 parts. Each of
these parts, together with C, forms a connected in-
duced subgraph Gi of G, and the subtrees Ti of the
root of T are tree decompositions of the subgraphs
Gi.

A clique separator (atom) associated to a non-leaf (leaf)
of T is called a clique separator (atom) of T . Write C(T ) as
the union of the clique separators of T . A decomposition
tree T of a graph G is an s-decomposition tree of G if, for
every subtree Ti of T , any vertex of Ci has neighbors in
at least two of the sets V (H1)\Ci, . . . , V (H�)\Ci, where
Hi, . . . , H� are the induced subgraphs associated to the
children of Ti.

Theorem 1. If G is an atom that is not a complete graph,
then every pair of non-adjacent vertices is an m-hull set
of G.

Let T be a decomposition tree for a graph G and
F1, . . . , Fk its atoms. We partition the set of atoms of
T into the following four types. Let Fi be an atom.

• Type 0: V (Fi) ∩ C(T ) is not a complete set;

• Type 1: V (Fi)∩C(T ) is a complete set and there is
a vertex u ∈ V (Fi) not adjacent to some vertex of
V (Fi) ∩ C(T );

• Type 2: V (Fi) ∩ C(T ) is a complete set, Fi is not
a complete graph and every vertex u ∈ V (Fi) is
adjacent to all vertices of V (Fi) ∩ C(T );

• Type 3: Fi is a complete graph.

Next, we describe an algorithm for constructing a mini-
mum m-hull set S of a graph G. Let T be an s-decompo-
sition tree of G.

Algorithm 1 Computation of a minimum m-hull set
Define S := Ø. Examine each atom F of T . If F is of
Type 1, include in S one vertex of F , not adjacent to
any vertex of V (F ) ∩ C(T ). If F is of Type 2, include
in S one pair of non-adjacent vertices of F . If F is of
Type 3, include in S all vertices of V (F ) \ C(T ). The
construction is terminated.

Theorem 2. The set obtained by the Algorithm 1 is a
minimum m-hull set of the graph.

Sketch of the proof. First we prove that the set S
obtained by the algorithm is an m-hull set of G. This is
made by induction on the height of the s-decomposition
tree of the graph. Next, we prove that S is minimum by
an analysis of the atoms of the s-decomposition tree.

Corollary 3. Let G be a graph, T an s-decomposition
tree of it. Denote by s the number of simplicial vertices
of G, and by fi the number of atoms of T of Type i, for
i = 1, 2. Then hm(G) = s+ f1 + f2.

In order to apply Algorithm 1, we need to employ a
decomposition tree which is in fact an s-decomposition
tree. Such a decomposition is obtained by Tarjan’s al-
gorithm [8] in O(nm) time. To determine the type of
each atom, we need no more than O(m) time, and T has
O(n) atoms. Consequently, the complexity of the entire
algorithm for computing hm(G) is O(nm).
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