| Graph definitions

Adjacency list
g:=GraphByAdjacencies([[],[4]1,[1,2]1,[1])

O—E0—0G@—0m

Adjacency matrix

M:=[[false, true, false], [true, false, true],
false]]; g:=GraphByAdjMatrix(M);

List of edges
g:=GraphByEdges([[1,2],[2,3],[3,41]);
Complete cover
g:=GraphByCompleteCover([[1,2,3,4],[4,5,6]1]1);

[false, true,

By relation

f:=function(x,y) return Intersection(x,y)<>[]; end;;
g:=GraphByRelation([[1,2,3],[3,4,5]1,[5,6,711,);

By walks

g:=GraphByWalks([1,2,3,4,1],[1,5,6]);

®
<
0]
g:=GraphByWalks([1,[2,3,4],5],[5,6]);
@

O
E—O—H—0
‘9'

As intersection graph
g:=IntersectionGraph([[1,2,3],[3,4,5],[5,6,7]11);
As a copy

h:=CopyGraph(g)

As an induced subgraph
h:=InducedSubgraph(g,[3,4,6]);

Cheatsheet for YAGS

* g:=Circulant(n,J) Second paramenter is a list of jumps

¢ g:=CompleteBipartiteGraph(n,m)

* g:=CompleteMultipartiteGraph(nl,n2[, n3 ...])

¢ g:=TorusGraph(n,m)

+ g:=TreeGraph(L) L is a list. Vertices at depth k have L[k] chil-
dren.

* g:=TreeGraph(n,k) Same as TreeGraph([n,n,..,n]) (the list has
length k)

¢ g:=WheelGraph(n)

* g:=WheelGraph(7,2) Second optional parameter is the radius of
the wheel.

* g:=FanGraph(4);

¢ g:=SunGraph(6);

* g:=SpikyGraph(4);

+ Examples: Wheel, Fan, Sun, Spiky:

| Named graphs |

Platonic

Tetrahedron, Octahedron, Cube, Dodecahedron, Icosahedron.

Other

TrivialGraph, DiamondGraph, ClawGraph, HouseGraph, BullGraph,
AntennaGraph, KiteGraph, AGraph, ChairGraph, DartGraph, DominoGraph,
FishGraph, GemGraph, HouseGraph, ParachuteGraph, ParapluieGraph
PawGraph, PetersenGraph, RGraph, SnubDisphenoid

Random graphs

* g:=RandomGraph(n)
* g:=RandomGraph(n,p) Graph with n vertices, each edge with
probability p to appear.

| New graphs from old |

* h:=RemoveVertices(g,[1,3]);
* h:=AddEdges(g,[[1,2]]);
* h:=RemoveEdges(g,[[1,2],[3,4]1]);

Graph families (with parameters) \

] Parameters \

:=DiscreteGraph(n)

:=CompleteGraph(n)

:=PathGraph(n) n vertices.

:=CycleGraph(n)

:=CubeGraph(n)

:=0ctahedralGraph(n)

:=JohnsonGraph(n,r) Vertices are subsets of {1,2,...,n} with
r elements, edges between subsets with intersection of r — 1 el-
ements.

.
0Q 0Q 0Q 0Q 0Q 0Q 0Q

* Order(g)

¢ Size(g)

* (CliqueNumber(g)

* VertexDegree(g,v)

* MaxDegree(g)

* MinDegree(g)

* Girth(g)

* NumberOfCliques(g)

* NumberOfConnectedComponents(g)

Boolean tests

¢ IsCompleteGraph(g)

* IsCliqueHelly(g)

¢ IsDiamondFree(g)

* IsEdge(g,x,y) Or IsEdge(g,[x,v])
¢ IsIsomorphicGraph(g,h)

¢ IsCompactSurface(g)

* IsSurface(g)

¢ IsLocallyConstant(g)

* IsLocallyH(g,h)

¢ IsLoopless(g)

] Products

* p=BoxProduct(g,h)

¢ p=TimesProduct(g,h)

* p=BoxTimesProduct(g,h)

¢ p=DisjointUnion(g,h)

* p=Join(g,h)

* p=GraphSum(g,1) ! is a list of graphs. Suppose that g has n
vertices. In the disjoint union of the first n graphs of [(using
TrivialGraphs if needed to fill n slots), add all edges between
graphs corresponding to adjacent vertices in g.

* p=Composition(g,h) is the same as GraphSum(g,1), where [is a
list of length the order of g, with all components equal to h.

| Operators

¢ h:=CliqueGraph(g)

* h:=CliqueGraph(g,m) Stops when a maximum of m cliques have
been found.

* h:=LineGraph(g)

=ComplementGraph(g)

=Cone(g)

=Suspension(g)

=ParedGraph(g)

* h:=CompletelyParedGraph(g)

* h:=QuotientGraph(g,p) p is a partition of vertices. The vertices
of h are the parts of p, with two vertices adjacent if there are two
vertices adjacent in g in the corresponding parts. Singletons in p
may be omitted.

* h:=QuotientGraph(g,11,12) [1,12 are lists of vertices of the same
length, with repetitions allowed. In h, each vertex of the first list
is identified with the corresponding vertex in the second list.

* h:=Link(g,x) The subgraph of g induced by the neighbors of z.
* h:=SpanningForest(g)

] Lists

h:
h:
h:
h:

¢ VertexNames(g)

* Cliques(g)

* Cliques(g,m) Stops if a maximum of m cliques have been
found.

* Basement (kng,kmg,x) n < m

¢ AdjMatrix(g)

* Adjaceny(g,v)

* Adjacencies(g)

* VertexDegrees(g)

* Edges(g)

* CompletesOfGivenOrder(g,o)

* ConnectedComponents(g)

* GraphAttributeStatistics(n,p,F) Returns information about
the parameter ¥ for 100 random graphs of order n and edge prob-
ability p.

* BoundaryVertices(g) For g a triangulation of a compact surface,
returns the list of vertices whose link is isomorphic to a path.

* InteriorVertices(g)

* SpanningForestEdges(g)

Distances \

* Distance(g,x,V)

* DistanceMatrix(g)

* Diameter(g)

* Eccentricity(g,x)

* Radius(g)

* Distances(g,a,b) a, b are lists of vertices. Returns a list.

* DistanceSet(g,a,b) As before, but returns a set.

* DistanceGraph(g,d) The graph with vertex set the vertices of g,
two vertices adjacent if their distance is in d.

*+ PowerGraph(g,n) Same as the distance graph with set of dis-
tance {1,...,n}.

Graph morphisms |

* IsoMorphisms(g,h)

* AutomorphismGroup(g)

* Morphism(g,h), Morphisms(g,h), NextMorphism(g,h,f)

* MonoMorphism(g,h), MonoMorphisms(g,h), NextMonoMorphism(g,h,f)
* EpiMorphism(g,h), EpiMorphisms(g,h), NextEpiMorphism(g,h,f)

* WeakMorphism(g,h), WeakMorphisms(g,h), NextWeakMorphism(g,h,f),
and more predefined classes of morphisms and the possibility
to define new classes

| Small Graphs |

* ConnectedGraphsOfGivenOrder(n) Upton = 9.
* Graph6ToGraph(s) s is a string.

* GraphsOfGivenOrder(n) Upton = 9.

* ImportGraph6(f) fis a filename.

| Graph categories |

* DefaultGraphCategory A variable that holds the cur-
rent graph category. Has to be set with, e.g.
SetDefaultCategory(OrientedGraphs)

Graph categories:
Graphs, UndirectedGraphs, LooplessGraphs, SimpleGraphs
OrientedGraphs.
] Digraphs

* InNeigh(g,x) List of in-neighbors of z in g.
¢ IsTournament(g)
* IsTransitiveTournament(g)

* Orientations(g) List of all oriented graphs that can be obtained
fromg

] Draw

+ Draw(g) Shows a window with a drawing of g. Commands in the
draw window: h:help, £:fit graph, 1: toggle labels, d: toggle dynam-
ics, r: toggle repulsion, s: save & quit, q: quit without saving

] Backtrack

Example: coloring with two colors:

g:=PathGraph(3);
chk:=function(L,g)
local x,vy;
if L=[] then return true; fi;
x:=Length(L);
for y in [1..x-1] do
if IsEdge(g,[x,vy]) and L[x]=L[y] then
return false;
fi;
od;
return true;
end;

then BacktrackBag([0,1],chk,Order(g),g); returns[[0, 1, 0],
[1,0,111

	Graph definitions
	Graph families (with parameters)
	Named graphs
	Random graphs
	New graphs from old
	Parameters
	Boolean tests
	Products
	Operators
	Lists
	Distances
	Graph morphisms
	Small Graphs
	Graph categories
	Graph categories:

	Digraphs
	Draw
	Backtrack

