
YAGS
Yet Another Graph System

Version 0.0.5

9 October 2019

C. Cedillo
R. MacKinney-Romero

M.A. Pizaña
I.A. Robles

R. Villarroel-Flores

YAGS 2

C. Cedillo Email: mc.cedilloc@gmail.com

R. MacKinney-Romero Email: rene@xanum.uam.mx

M.A. Pizaña Email: mpizana@gmail.com
Homepage: http://xamanek.izt.uam.mx/map/

I.A. Robles Email: ismael@codeismo.com
Homepage: http://www.codeismo.com/

R. Villarroel-Flores Email: rafaelv@uaeh.edu.mx
Homepage: http://rvf0068.github.io

mailto://mc.cedilloc@gmail.com
mailto://rene@xanum.uam.mx
mailto://mpizana@gmail.com
http://xamanek.izt.uam.mx/map/
mailto://ismael@codeismo.com
http://www.codeismo.com/
mailto://rafaelv@uaeh.edu.mx
http://rvf0068.github.io

YAGS 2

Copyright
YAGS - Yet Another Graph System
Copyright © 2018 C. Cedillo, R. MacKinney-Romero, M.A. Pizaña, I.A. Robles and R. Villarroel-Flores.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

For details, see the file GPL in the installation directory of YAGS typically under
GAP-DIR/pkg/yags/GPL or see http://www.gnu.org/licenses/gpl-3.0.html.

CONTACT INFORMATION:
M.A. Pizaña
yags@xamanek.izt.uam.mx
mpizana@gmail.com
Departamento de Ingeniería Eléctrica
Universidad Autónoma Metropolitana
Av. San Rafael Atlixco 186.
Col. Vicentina, Del. Iztapalapa
Ciudad de México 09340 MEXICO.

Acknowledgements

Partially supported by SEP-CONACyT, grant 183210.

We are also grateful for the support of our Universities:
Universidad Autónoma Metropolitana and Universidad Autónoma del Estado de Hidalgo.

http://www.gnu.org/licenses/gpl-3.0.html
mailto://yags@xamanek.izt.uam.mx
mailto://mpizana@gmail.com

Contents

1 Preface 6
1.1 Welcome to YAGS . 6
1.2 Citing YAGS . 7
1.3 Authors . 7
1.4 Contributors . 8
1.5 More Information . 8

2 Getting Started 9
2.1 What is YAGS? . 9
2.2 Installing YAGS . 9
2.3 A Gentle Tutorial . 11
2.4 Cheatsheet . 16

3 Cliques and Clique Graphs 19
3.1 Cliques and Clique Number . 19
3.2 Clique Graphs . 21
3.3 Basements and Iterated Clique Graphs . 23
3.4 Stars and Neckties . 24
3.5 Clique Behavior . 25

4 Graph Categories 29
4.1 The Default Graph Category . 30
4.2 The Target Graph Category . 31
4.3 Changing the Target Graph Category in Place 32

5 Morphisms of Graphs 34
5.1 A Quick Start . 34
5.2 Predefined Types of Morphisms . 37
5.3 Main Procedures . 39
5.4 User-Defined Types of Morphisms . 40

3

YAGS 4

6 Backtracking 42
6.1 Simplest Examples: Using Opts and Done . 42
6.2 Full Examples: Using Chk and Extra . 44
6.3 Advanced Examples: When Opts and Done are functions 45
6.4 Debugging Backtracking Algorithms. 46

A YAGS Functions by Topic 48
A.1 Most Common Functions . 48
A.2 Drawing . 51
A.3 Constructing Graphs . 52
A.4 Families of Graphs . 53
A.5 Small Graphs . 56
A.6 Attributes and Parameters . 56
A.7 Unary Operators . 59
A.8 Binary Operators . 60
A.9 Cliques . 60
A.10 Morphisms of Graphs . 61
A.11 Graph Categories . 62
A.12 Digraphs . 63
A.13 Groups and Rings . 63
A.14 Backtracking . 64
A.15 Miscellaneous . 64
A.16 Deprecated . 65

B YAGS Functions Reference 67
B.1 A . 67
B.2 B . 69
B.3 C . 74
B.4 D . 84
B.5 E . 90
B.6 F . 92
B.7 G . 93
B.8 H . 102
B.9 I . 104
B.10 J . 113
B.11 K . 114
B.12 L . 114
B.13 M . 115
B.14 N . 116
B.15 O . 118
B.16 P . 120
B.17 Q . 124
B.18 R . 125
B.19 S . 130

YAGS 5

B.20 T . 133
B.21 U . 137
B.22 V . 138
B.23 W . 139
B.24 Y . 140

C Change Log 143
C.1 Changes from version 0.0.4 to version 0.0.5 143
C.2 Changes from version 0.0.3 to version 0.0.4 143
C.3 Changes from version 0.0.2 to version 0.0.3 143

References 145

Index 146

Chapter 1

Preface

1.1 Welcome to YAGS

YAGS - Yet Another Graph System (also Yttrium Aluminium GarnetS) is a GAP package for
dealing with graphs, in the sense of Graph Theory (not bar graphs, pie charts nor graphs of
functions). Our graphs are then, ordered pairs G = (V,E), where V is a finite set of vertices and
E is a finite set of edges which are (ordered or unordered) pairs of vertices.

YAGS was initiated by M.A. Pizaña in May 2003, and later incorporated the work of R.
MacKinney-Romero, R. Villarroel-Flores, C. Cedillo and I.A. Robles (in that order, see Section
1.3 for details). It sprang from our need of computing graphs and graph parameters within
our research on graph theory and clique graphs. Consequently, YAGS is well suited for these
purposes.

YAGS is a GAP package and hence its code is interpreted and not compiled (although some
compilation possibilities exist in GAP). Therefore, from the very beginning, it was clear that
speed is not our main goal. Instead, we wanted a very functional, full-featured system; a sys-
tem adequate for rapid prototyping of algorithms; and a quick, easy-to-use, way for testing the
rapidly changing working conjectures that are typical of the research process.

Over the years, YAGS grew to its present size of more than 200 methods and more than 10
thousands lines of code. We considered that all this code and effort could (and should) be useful
for other people and then we decided to engage in the task of tying up loose ends and writing
this manual.

We would like to mention that we started using GRAPE, and we are grateful to its author,
Leonard H. Soicher, for the very useful system that we used for several years. But at some point
we needed some Object-Oriented features that were not easy to implement in GRAPE and our
own subsystem had to follow its own way. If the reader has a profound need for having groups
acting on her/his graphs, then GRAPE may be the best choice. On the other hand, YAGS offers
a much wider set of functions (Appendix B); a graph-drawing subsystem (Draw (B.4.15)); many
methods for dealing with graph homomorphism (Chapter 5); an Object-Oriented approach that
simplifies the task of working with several different graph categories (Chapter 4); and a generic
backtracking subsystem useful to solve many combinatorial problems easily (Chapter 6).

6

YAGS 7

1.2 Citing YAGS

If you publish a result and you used YAGS during your research, please cite us as you would
normally do with a research paper:

C. Cedillo, R. MacKinney-Romero, M.A. Pizaña, I.A. Robles and R. Villarroel-Flores.
YAGS - Yet Another Graph System, Version 0.0.5 (2019)
http://xamanek.izt.uam.mx/yags/

@manual{YAGS,
author = {Cedillo, C. and MacKinney-Romero, R. and Piza{\~n}a, M. A. and

Robles, I. A. and Villarroel-Flores, R.},
title = {YAGS - Yet Another Graph System, Version 0.0.5},
year = {2019},
note = {http://xamanek.izt.uam.mx/yags/},

}

Several other citation formats can be obtained from the file YAGS-DIR/CITATION or by
typing Cite("yags"); at the GAP prompt.

1.3 Authors

The authors of YAGS in the chronological order of their first contribution are as follows:

M.A. Pizaña
Departamento de Ingeniería Eléctrica
Universidad Autónoma Metropolitana
mpizana@gmail.com

R. MacKinney-Romero
Departamento de Ingeniería Eléctrica
Universidad Autónoma Metropolitana
rene@xanum.uam.mx

R. Villarroel-Flores
Centro de Investigación en Matemáticas
Universidad Autónoma del Estado de Hidalgo
rafaelv@uaeh.edu.mx

C. Cedillo
Departamento de Ingeniería Eléctrica
Universidad Autónoma Metropolitana
mc.cedilloc@gmail.com

http://xamanek.izt.uam.mx/yags/
mailto://mpizana@gmail.com
mailto://rene@xanum.uam.mx
mailto://rafaelv@uaeh.edu.mx
mailto://mc.cedilloc@gmail.com

YAGS 8

I.A. Robles
Departamento de Matemáticas
Universidad Autónoma Metropolitana
ismael@codeismo.com

1.4 Contributors

YAGS authors are grateful with the following contributors for the valuable alpha-testing.

F. Larrión
Instituto de Matemáticas
Universidad Nacional Autónoma de México
paco@matem.unam.mx

B. Schroeder.
Department of Mathematics
The University of Southern Mississippi
bernd.schroeder@usm.edu

1.5 More Information

More information about YAGS can be found on its official web page and manual:
http://xamanek.izt.uam.mx/yags/
http://xamanek.izt.uam.mx/yags/doc/
http://xamanek.izt.uam.mx/yags/yags-manual.pdf

You can receive notifications about YAGS (i.e. new releases, bug fixes, etc.) by subscribing
to its email distribution list: http://xamanek.izt.uam.mx/yagsnews/

If you are a developer, you may contribute to our project on our public repository:
https://github.com/yags/yags/

Comments, support requests, bug reports and installation notifications are welcome at
yags@xamanek.izt.uam.mx.

mailto://ismael@codeismo.com
mailto://paco@matem.unam.mx
mailto://bernd.schroeder@usm.edu
http://xamanek.izt.uam.mx/yags/
http://xamanek.izt.uam.mx/yags/doc/
http://xamanek.izt.uam.mx/yags/yags-manual.pdf
http://xamanek.izt.uam.mx/yagsnews/
https://github.com/yags/yags/
mailto://yags@xamanek.izt.uam.mx

Chapter 2

Getting Started

2.1 What is YAGS?

YAGS - Yet Another Graph System (also Yttrium Aluminium GarnetS) is a GAP package for
dealing with graphs, in the sense of Graph Theory (not bar graphs, pie charts nor graphs of
functions). Hence our graphs are ordered pairs G = (V,E), where V is a finite set of vertices and
E is a finite set of edges which are (ordered or unordered) pairs of vertices.

YAGS was designed to be useful for research on graphs theory and clique graphs. It is a very
functional, full-featured system; a system adequate for rapid prototyping of algorithms; and it is
a quick, easy-to-use way, for testing the rapidly changing working conjectures which are typical
of the research process.

YAGS offers an ample set of functions (Appendix B); a graph-drawing subsystem (Draw
(B.4.15)); many methods for dealing with graph homomorphism (Chapter 5); an Object-
Oriented approach that simplifies the task of working with several different graph categories
(Chapter 4); and a generic backtracking subsystem useful to solve many combinatorial prob-
lems easily (Chapter 6).

2.2 Installing YAGS

If you are fond of git and you already installed GAP, then you could clone our repository as
usual (here we assume that GAP-DIR is your GAP installation directory):

Example
git clone http://github.com/yags/yags.git GAP-DIR/pkg/yags

Otherwise, you may follow these installation instructions:

1. Install GAP following the instructions at http://www.gap-system.org/.

2. Obtain YAGS from its repository here http://xamanek.izt.uam.mx/yags/yags.zip
or here https://github.com/yags/yags/archive/v0.0.5.zip.

9

http://www.gap-system.org/
http://xamanek.izt.uam.mx/yags/yags.zip
https://github.com/yags/yags/archive/v0.0.5.zip

YAGS 10

3. Unpack YAGS: the contents of the zip file should go under GAP-DIR/pkg/yags/. Here,
we assume that GAP-DIR is your GAP installation directory.

4. Test YAGS by running GAP, loading YAGS and executing a few basic commands in a
terminal:

Example
> gap

--- some GAP info here ---
gap> RequirePackage("yags");
Loading YAGS - Yet Another Graph System, Version 0.0.5.
Copyright (C) 2019 by the YAGS authors; for details type: ?yags:authors
This is free software under GPLv3; for details type: ?yags:copyright
true
gap> CliqueNumber(Icosahedron);NumberOfCliques(Icosahedron);
3
20
gap>

5. (Optional) Make us happier by sending us a brief installation notification
to yags@xamanek.izt.uam.mx and subscribing to YAGS’s distribution list:
http://xamanek.izt.uam.mx/yagsnews/

Did it work? Congratulations! Otherwise, consider the following troubleshooting issues:

• IS GAP WORKING?
Make sure it is. Follow carefully GAP’s installation and troubleshooting procedures.

• IS THE INSTALLATION DIRECTORY CORRECT?
The GAP’s installation directory, GAP-DIR, is typically something like /opt/gap4r8/
(in MS Windows it may look like C:\gap4r8\). If this is the case, the
YAGS’s installation directory, YAGS-DIR, is /opt/gap4r8/pkg/yags/ (in MS Win-
dows, it would be C:\gap4r8\pkg\yags\). Then, the full path for YAGS’s
info file PackageInfo.g should be /opt/gap4r8/pkg/yags/PackageInfo.g (or
C:\gap4r8\pkg\yags\PackageInfo.g)

• ARE YOU USING GRAPE?
GRAPE and YAGS are incompatible: they can not be loaded at the same time. If you
had an initialization file that loads GRAPE automatically, you should disable it in order
to use YAGS. Alternatively, the command gap -r starts gap disabling any user-specific
configuration files.

• UNAUTHORIZED TO ACCESS GAP’S DIRECTORIES?
The installation procedure above assumed that you have full access to your computer (i.e.
that you are the root of the system or that you are using your PC or Mac). If this is not the
case, you can also install YAGS under your user directory. For instance, if your user direc-
tory is /home/joe/ then you can create a subdirectory /home/joe/gaplocal/ and hence

mailto://yags@xamanek.izt.uam.mx
http://xamanek.izt.uam.mx/yagsnews/

YAGS 11

your YAGS’s installation directory will be /home/joe/gaplocal/pkg/yags/. Then you
can start GAP using gap -l ";/home/joe/gaplocal" so that GAP knows where your
YAGS is.

2.3 A Gentle Tutorial

This tutorial assumes that you already installed GAP and YAGS; and that you have some basic
understanding of GAP: user interface, the read-eval-print loop, arithmetic operations, and lists.
It is strongly recommended that you have some working directory, WORKING-DIR, different
from your GAP’s and YAGS’s installation directories. For instance, if your home directory
is /home/joe/ your working directory could be /home/joe/Yags/. Then you should open a
terminal, move to your working directory, start GAP and then, load YAGS:

Example
/home/joe> cd Yags
/home/joe/Yags> gap

--- some GAP info here ---
gap> RequirePackage("yags");
gap> RequirePackage("yags");
Loading YAGS - Yet Another Graph System, Version 0.0.5.
Copyright (C) 2019 by the YAGS authors; for details type: ?yags:authors
This is free software under GPLv3; for details type: ?yags:copyright
true
gap>

The exact appearance of your system prompt (/home/joe> and /home/joe/Yags/> in the
example) may be different depending on your system, but the commands ’cd Yags’ and ’gap’
are actually the same in all supported systems (assuming your working directory exists and is
named ’Yags’). From there (starting with the command ’RequirePackage("yags");’) every-
thing happens within GAP and hence it is system-independent.

Now we want to define some graph. Say we have the list of edges of the desired graph:

{{1,2},{2,3},{3,4},{4,1},{1,5},{5,4}}

We can put those edges in a list and then construct the graph:
Example

gap> list:=[[1,2],[2,3],[3,4],[4,1],[1,5],[5,4]];
[[1, 2], [2, 3], [3, 4], [4, 1], [1, 5], [5, 4]]
gap> g:=GraphByEdges(list);
Graph(Category := SimpleGraphs, Order := 5, Size :=
6, Adjacencies := [[2, 4, 5], [1, 3], [2, 4], [1, 3, 5],

[1, 4]])

Note that GAP uses brackets (’[’ and ’]’) instead of braces (’{’ and ’}’) to represent sets
and lists (actually, in GAP a set is simply an ordered list). Note also that in GAP ’list’ and
’List’ are two different things and you can not use the latter since it is a reserved word of GAP.

YAGS 12

In general, it is better for you to use lowercase names for your variables, to avoid name clashes,
since all functions in GAP and YAGS start with an uppercase letter.

The result in the previous example says that it is a graph, and a simple graph. By default
all graphs in YAGS are simple (no loops, no arrows, no parallel edges, only plain undirected
edges), in Chapter 4 we explain how to work with other types of graphs, like digraphs, loopless
graphs, and graphs that may have loops (but no parallel edges are supported in YAGS at all). In
this gentle tutorial all our graphs are simple.

The result also says, that the just constructed graph g have 5 vertices and 6 edges. The
reported list of adjacencies means that the vertex 1 is adjacent (connected by an edge) to 2, 4
and 5, that the vertex 2 is adjacent to 1 and 3 and so on. To be sure, we can draw our graph and
check if it is the intended graph:

Example
gap> Draw(g);

A separate window appears with an editable drawing of the graph (but the graph itself is not
editable here). On that window, type: ’D’ (toggle dynamics on/off), ’R’ (toggle repulsion on/off),
’L’ (toggle labels on/off) and ’F’ (fit graph into window) to obtain a nice drawing (the initial
one is random). The full list of keyboard commands for the Draw window is displayed when
typing ’H’ (toggle help message). Besides these keyboard commands, you can use your mouse
in obvious ways to edit the drawing.

To quit, type ’S’. The drawing is stored within the graph g and remembered by YAGS in
case you want to draw the graph again.

If you are new to GAP, it may be worth mentioning that you need not remember or type all
the full names of every YAGS operation: GAP supports command completion. For instance, if
you type Path and then hit the <TAB> key, GAP automatically completes the prefix to the unique
command that completes it, namely: PathGraph. If, on the other hand, the prefix has several
possible completions, then GAP simply beeps, but a second <TAB> makes GAP respond with a
list of possible completions, so you can then type some additional keys and perhaps type <TAB>
again, and so on.

Example
gap> GraphBy<TAB><TAB>

GraphByAdjMatrix
GraphByAdjacencies
GraphByCompleteCover
GraphByEdges
GraphByRelation
GraphByWalks

gap> GraphBy

Also, the <UP> and <DOWN> keys are useful to bring back (and perhaps edit) some commands
typed earlier in your GAP session. As with any command in GAP/YAGS, in case of doubt, you
can always access the online help by typing:

Example
gap> ?yags:draw
Help: several entries match this topic - type ?2 to get match [2]

YAGS 13

[1] yags: Draw
[2] yags: Drawing
gap> ?1

B.1-55 Draw

> Draw(G) --- operation

Takes a graph G and makes a drawing of it in a separate window. The
user can then view and modify the drawing and finally save the
vertex coordinates of the drawing into the graph G.

--- many more lines here ---

Here, ’?’ specifies that we want help; ’yags:’ specifies on which manual book we want to
search (YAGS’s book in this case) and ’draw’ specifies the topic we would like to be informed
about. As it is common, there are more than one place with information on our topic, hence we
choose among the options with ’?1’ in the next command line. It is not necessary to specify the
book, but then you could receive many more options, in different books, about some specific
topic.

Now that we know that our graph is the one we want, we can ask YAGS a lot of things about
it:

Example
gap> Order(g); Size(g); Diameter(g); Girth(g);
5
6
2
3
gap> NumberOfCliques(g); CliqueNumber(g);
4
3
gap> Adjacencies(g);Adjacency(g,4);Adjacency(g,3);
[[2, 4, 5], [1, 3], [2, 4], [1, 3, 5], [1, 4]]
[1, 3, 5]
[2, 4]
gap> VertexDegrees(g);VertexDegree(g,4);VertexDegree(g,3);
[3, 2, 2, 3, 2]
3
2
gap> IsDiamondFree(g);IsCompleteGraph(g);IsLoopless(g);
true
false
true
gap> Cliques(g);CompletesOfGivenOrder(g,3);
[[1, 4, 5], [1, 2], [2, 3], [3, 4]]
[[1, 4, 5]]
gap> CompletesOfGivenOrder(g,2);
[[1, 2], [1, 4], [1, 5], [2, 3], [3, 4], [4, 5]]

YAGS 14

Note that in YAGS a clique is always maximal. This is just a small sample. The full alpha-
betic list of YAGS operations can be found in Appendix B, and grouped by topic in Appendix A.
There is also a one-page pdf file, cheatsheet-yags.pdf, which contains a very useful synopsis
of many of the most common YAGS operations. See the next section (2.4) for details.

What about modifying our graphs? Well, all graphs in YAGS are always immutable, which
means that, once created, we can never modify a graph. But we can create new graphs which
are variations of existing ones:

Example
gap> g;
Graph(Category := SimpleGraphs, Order := 5, Size :=
6, Adjacencies := [[2, 4, 5], [1, 3], [2, 4], [1, 3, 5],

[1, 4]])
gap> h:=AddEdges(g,[[1,3],[2,4]]);;
gap> g;
Graph(Category := SimpleGraphs, Order := 5, Size :=
6, Adjacencies := [[2, 4, 5], [1, 3], [2, 4], [1, 3, 5],

[1, 4]])
gap> h;
Graph(Category := SimpleGraphs, Order := 5, Size :=
8, Adjacencies := [[2, 3, 4, 5], [1, 3, 4], [1, 2, 4],

[1, 2, 3, 5], [1, 4]])

Note that the graph g remains the same, but the graph h has two additional edges. This is
done in this way, because in YAGS everything that is computed about a graph is stored within
the graph, so that we never need to compute something twice. This saves time when comput-
ing attributes of graphs requiring CPU-intensive algorithms (like computing cliques and clique
graphs), but at the expense of having to make a copy of the graph when we just want a small
variation of it.

There are a lot of predefined graphs (the full list can be consulted in Appendix A.4):
Example

gap> PathGraph(5);CycleGraph(6);CompleteGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
4, Adjacencies := [[2], [1, 3], [2, 4], [3, 5], [4]])
Graph(Category := SimpleGraphs, Order := 6, Size :=
6, Adjacencies := [[2, 6], [1, 3], [2, 4], [3, 5], [4, 6],

[1, 5]])
Graph(Category := SimpleGraphs, Order := 5, Size :=
10, Adjacencies := [[2, 3, 4, 5], [1, 3, 4, 5], [1, 2, 4, 5],

[1, 2, 3, 5], [1, 2, 3, 4]])
gap> CompleteBipartiteGraph(3,3);TreeGraph([2,2,2]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
9, Adjacencies := [[4, 5, 6], [4, 5, 6], [4, 5, 6],

[1, 2, 3], [1, 2, 3], [1, 2, 3]])
Graph(Category := SimpleGraphs, Order := 15, Size :=
14, Adjacencies := [[2, 3], [1, 4, 5], [1, 6, 7], [2, 8, 9],

[2, 10, 11], [3, 12, 13], [3, 14, 15], [4], [4], [5],
[5], [6], [6], [7], [7]])

YAGS 15

gap> Octahedron;ParapluieGraph;
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[3, 4, 5, 6], [3, 4, 5, 6], [1, 2, 5, 6],

[1, 2, 5, 6], [1, 2, 3, 4], [1, 2, 3, 4]])
Graph(Category := SimpleGraphs, Order := 7, Size :=
9, Adjacencies := [[2], [1, 3], [2, 4, 5, 6, 7], [3, 5],

[3, 4, 6], [3, 5, 7], [3, 6]])

We have found that GraphByWalks (B.7.11) is one of the most useful and versatile ways of
specifying graphs:

Example
gap> p5:=PathGraph(5);;c6:=CycleGraph(6);;w4:=WheelGraph(4);;
gap> IsIsomorphicGraph(p5,GraphByWalks([1..5]));
true
gap> IsIsomorphicGraph(c6,GraphByWalks([1,2,3,4,5,6,1]));
true
gap> IsIsomorphicGraph(c6,GraphByWalks([1..6],[6,1]));
true
gap> IsIsomorphicGraph(w4,GraphByWalks([1,[2,3,4,5,2]]));
true
gap> sd:=GraphByWalks([1,[2,3,4,5],6],[5,[6,7,8,1],2]);;
gap> IsIsomorphicGraph(SnubDisphenoid,sd);
true

YAGS knows about random graphs, so you can take some random graphs and study their
parameters. Furthermore, GraphAttributeStatistics (B.7.4) can collect statistics on 100
random graphs at a time returning the collected results of the specified graph parameter on these
graphs. The following experiments show, for instance that the values of the minimum degree
parameter are much more spread than those of the clique number or those of the diameter.

Example
gap> g:=RandomGraph(30,1/2);;
gap> MinDegree(g); CliqueNumber(g); Diameter(g);
9
6
2
gap> GraphAttributeStatistics(30,1/2,MinDegree);
[[5, 1], [6, 2], [7, 6], [8, 22], [9, 30], [10, 30],

[11, 5], [12, 4]]
gap> GraphAttributeStatistics(30,1/2,CliqueNumber);
[[5, 2], [6, 70], [7, 24], [8, 4]]
gap> GraphAttributeStatistics(30,1/2,Diameter);
[[2, 91], [3, 9]]

Finally, it is worth mentioning that algorithms the may take too much time to finish report
their progress using the InfoLevel mechanism: Enabling and disabling progress reporting is
done by changing the InfoLevel of YAGSInfo.InfoClass to the appropriate level. The default
InfoLevel is 0. Some of YAGS algorithms report at InfoLevel 1, and others at InfoLevel 3.

YAGS 16

Example
gap> SetInfoLevel(YAGSInfo.InfoClass,3);
gap> FullMonoMorphisms(PathGraph(3),CycleGraph(3));
#I []
#I [1]
#I [1, 2]
#I [1, 3]
#I [2]
#I [2, 1]
#I [2, 3]
#I [3]
#I [3, 1]
#I [3, 2]
[]
gap> SetInfoLevel(YAGSInfo.InfoClass,0);
gap> FullMonoMorphisms(PathGraph(3),CycleGraph(3));
[]

This way we can abort the calculation (by typing Ctr-C) in case we see that it will take eons
to finish. See YAGSInfo.InfoClass (B.24.3) for details.

2.4 Cheatsheet

There is a very useful two-page pdf cheatsheet with YAGS’s most common functions. It
can be consulted in your YAGS installation at YAGS-DIR/doc/cheatsheet-yags.pdf or on
the web at http://xamanek.izt.uam.mx/yags/cheatsheet-yags.pdf. Also, the pdf ver-
sion of this manual includes it in the next page and an HTML version can be found here:
https://github.com/yags/cheatsheet/blob/master/cheatsheet-yags.org.

http://xamanek.izt.uam.mx/yags/cheatsheet-yags.pdf
https://github.com/yags/cheatsheet/blob/master/cheatsheet-yags.org

Che
ats
hee

tfo
rYA

GS
Gra
ph
defi

nit
ion
s

Adj
ace
ncy

list
g:

=G
ra

ph
By

Ad
ja

ce
nc

ie
s(

[[
],

[4
],

[1
,2

],
[]

])

Adj
ace
ncy

ma
trix

M:
=[

[f
al

se
,

tr
ue

,
fa

ls
e]

,
[t

ru
e,

fa
ls

e,
tr

ue
],

[f
al

se
,

tr
ue

,
fa

ls
e]

];
g:

=G
ra

ph
By

Ad
jM

at
ri

x(
M)

;
List

ofe
dge
s

g:
=G

ra
ph

By
Ed

ge
s(

[[
1,

2]
,[

2,
3]

,[
3,

4]
])

;
Com

ple
tec

ove
r

g:
=G

ra
ph

By
Co

mp
le

te
Co

ve
r(

[[
1,

2,
3,

4]
,[

4,
5,

6]
])

;

By
rela

tion
f:

=f
un

ct
io

n(
x,

y)
re

tu
rn

In
te

rs
ec

ti
on

(x
,y

)<
>[

];
en

d;
;

g:
=G

ra
ph

By
Re

la
ti

on
([

[1
,2

,3
],

[3
,4

,5
],

[5
,6

,7
]]

,f
);

By
wa
lks

g:
=G

ra
ph

By
Wa

lk
s(

[1
,2

,3
,4

,1
],

[1
,5

,6
])

;

g:
=G

ra
ph

By
Wa

lk
s(

[1
,[

2,
3,

4]
,5

],
[5

,6
])

;

As
int
ers
ect
ion

gra
ph

g:
=I

nt
er

se
ct

io
nG

ra
ph

([
[1

,2
,3

],
[3

,4
,5

],
[5

,6
,7

]]
);

As
aco

py
h:

=C
op

yG
ra

ph
(g

)
As
an
ind
uce
dsu

bgr
aph

h:
=I

nd
uc

ed
Su

bg
ra

ph
(g

,[
3,

4,
6]

);

Gra
ph
fam

ilie
s(w

ith
par
am
ete
rs)

•g
:=

Di
sc

re
te

Gr
ap

h(
n)

•g
:=

Co
mp

le
te

Gr
ap

h(
n)

•g
:=

Pa
th

Gr
ap

h(
n)

n
ver
tice
s.

•g
:=

Cy
cl

eG
ra

ph
(n

)
•g

:=
Cu

be
Gr

ap
h(

n)
•g

:=
Oc

ta
he

dr
al

Gr
ap

h(
n)

•g
:=

Jo
hn

so
nG

ra
ph

(n
,r

)
Ver
tice
sa
res
ubs
ets
of{

1
,2

,.
..
,n
}
wit
h

r
ele
me
nts
,ed
ges

bet
wee

ns
ubs
ets
wit
hin
ters

ect
ion
ofr
−

1
el-

em
ent
s.

•g
:=

Ci
rc

ul
an

t(
n,

J)
Sec
ond

par
am
ent
eri
sa
list
ofj
um
ps

•g
:=

Co
mp

le
te

Bi
pa

rt
it

eG
ra

ph
(n

,m
)

•g
:=

Co
mp

le
te

Mu
lt

ip
ar

ti
te

Gr
ap

h(
n1

,n
2[

,
n3

..
.]

)
•g

:=
To

ru
sG

ra
ph

(n
,m

)
•g

:=
Tr

ee
Gr

ap
h(

L)
L
isa

list.
Ver
tice
sa
tde

pth
k
hav
eL

[k
]
chil
-

dre
n.

•g
:=

Tr
ee

Gr
ap

h(
n,

k)
Sam

ea
sTr

ee
Gr

ap
h(

[n
,n

,.
.,

n]
)
(the

list
has

len
gth

k)
•g

:=
Wh

ee
lG

ra
ph

(n
)

•g
:=

Wh
ee

lG
ra

ph
(7

,2
)
Sec
ond

opt
ion
alp
ara
me
ter
ist
he
rad
ius
of

the
wh
eel
.

•g
:=

Fa
nG

ra
ph

(4
);

•g
:=

Su
nG

ra
ph

(6
);

•g
:=

Sp
ik

yG
ra

ph
(4

);
•E
xam

ple
s:W

hee
l,Fa

n,S
un,
Spi
ky:

Na
me
dg
rap
hs

Pla
ton
ic

Te
tr

ah
ed

ro
n,O

ct
ah

ed
ro

n,C
ub

e,D
od

ec
ah

ed
ro

n,I
co

sa
he

dr
on
.

Oth
er

Tr
iv

ia
lG

ra
ph
,D

ia
mo

nd
Gr

ap
h,

Cl
aw

Gr
ap

h,
Ho

us
eG

ra
ph
,B

ul
lG

ra
ph
,

An
te

nn
aG

ra
ph
,Ki

te
Gr

ap
h,A

Gr
ap

h,C
ha

ir
Gr

ap
h,D

ar
tG

ra
ph
,Do

mi
no

Gr
ap

h,
Fi

sh
Gr

ap
h,G

em
Gr

ap
h,H

ou
se

Gr
ap

h,P
ar

ac
hu

te
Gr

ap
h,P

ar
ap

lu
ie

Gr
ap

h,
Pa

wG
ra

ph
,Pe

te
rs

en
Gr

ap
h,R

Gr
ap

h,S
nu

bD
is

ph
en

oi
d.

Ran
dom

gra
phs

•g
:=

Ra
nd

om
Gr

ap
h(

n)
•g

:=
Ra

nd
om

Gr
ap

h(
n,

p)
Gra
ph
wit
hn

ver
tice
s,e

ach
edg
ew

ith
pro
bab
ility

p
toa
ppe
ar. New
gra
phs

fro
mo

ld
•h

:=
Re

mo
ve

Ve
rt

ic
es

(g
,[

1,
3]

);
•h

:=
Ad

dE
dg

es
(g

,[
[1

,2
]]

);
•h

:=
Re

mo
ve

Ed
ge

s(
g,

[[
1,

2]
,[

3,
4]

])
;

Par
am
ete
rs

•O
rd

er
(g

)
•S

iz
e(

g)
•C

li
qu

eN
um

be
r(

g)
•V

er
te

xD
eg

re
e(

g,
v)

•M
ax

De
gr

ee
(g

)
•M

in
De

gr
ee

(g
)

•G
ir

th
(g

)
•N

um
be

rO
fC

li
qu

es
(g

)
•N

um
be

rO
fC

on
ne

ct
ed

Co
mp

on
en

ts
(g

)

Boo
lea
nte

sts
•I

sC
om

pl
et

eG
ra

ph
(g

)
•I

sC
li

qu
eH

el
ly

(g
)

•I
sD

ia
mo

nd
Fr

ee
(g

)
•I

sE
dg

e(
g,

x,
y)
orI

sE
dg

e(
g,

[x
,y

])
•I

sI
so

mo
rp

hi
cG

ra
ph

(g
,h

)
•I

sC
om

pa
ct

Su
rf

ac
e(

g)
•I

sS
ur

fa
ce

(g
)

•I
sL

oc
al

ly
Co

ns
ta

nt
(g

)
•I

sL
oc

al
ly

H(
g,

h)
•I

sL
oo

pl
es

s(
g)

Pro
duc

ts
•p

=B
ox

Pr
od

uc
t(

g,
h)

•p
=T

im
es

Pr
od

uc
t(

g,
h)

•p
=B

ox
Ti

me
sP

ro
du

ct
(g

,h
)

•p
=D

is
jo

in
tU

ni
on

(g
,h

)
•p

=J
oi

n(
g,

h)
•p

=G
ra

ph
Su

m(
g,

l)
l
isa

list
of
gra
phs
.S
upp

ose
tha
tg

has
n

ver
tice
s.

Int
he
disj
oin
tu
nio
no
fth
efi
rst

n
gra
phs

of
l
(us
ing

Tr
iv

ia
lG

ra
ph

s
ifn
eed
ed
to
fill

n
slot
s),
add

all
edg
es
bet
wee

n
gra
phs

cor
res
pon

din
gto

adj
ace
ntv
erti
ces
ing
.

•p
=C

om
po

si
ti

on
(g

,h
)
ist
he
sam

ea
sGr

ap
hS

um
(g

,l
),w

her
el
isa

list
ofl
eng
tht
he
ord
ero

fg,
wit
ha
llco

mp
one
nts
equ
alt
oh
.

Op
era
tor
s

•h
:=

Cl
iq

ue
Gr

ap
h(

g)
•h

:=
Cl

iq
ue

Gr
ap

h(
g,

m)
Sto
psw

hen
am
axim

um
ofm

cliq
ues

hav
e

bee
nfo

und
.

•h
:=

Li
ne

Gr
ap

h(
g)

•h
:=

Co
mp

le
me

nt
Gr

ap
h(

g)
•h

:=
Co

ne
(g

)
•h

:=
Su

sp
en

si
on

(g
)

•h
:=

Pa
re

dG
ra

ph
(g

)
•h

:=
Co

mp
le

te
ly

Pa
re

dG
ra

ph
(g

)
•h

:=
Qu

ot
ie

nt
Gr

ap
h(

g,
p)

p
isa

par
titio

no
fve
rtic
es.

The
ver
tice
s

ofh
are
the
par
tso
fp,
wit
htw

ov
erti
ces
adj
ace
nti
fth
ere
are
two

ver
tice
sad

jace
nti
ng
int
he
cor
res
pon

din
gp
arts
.Si
ngl
eto
ns
inp

ma
yb
eo
mit
ted
.

•h
:=

Qu
ot

ie
nt

Gr
ap

h(
g,

l1
,l

2)
l1
,l
2
are
lists

ofv
erti
ces
oft
he
sam

e
len
gth
,wi
thr
epe
titio

ns
allo
wed

.In
h
,ea
ch
ver
tex
oft
he
firs
tlis
t

isid
ent
ifie
dw
ith
the
cor
res
pon

din
gve

rtex
int
he
sec
ond

list.
•h

:=
Li

nk
(g

,x
)
The

sub
gra
ph
ofg

ind
uce
db
yth
en
eig
hbo

rso
fx.

•h
:=

Sp
an

ni
ng

Fo
re

st
(g

)

List
s

•V
er

te
xN

am
es

(g
)

•C
li

qu
es

(g
)

•C
li

qu
es

(g
,m

)
Sto
ps
ifa

ma
xim
um

of
m
cliq
ues

hav
eb
een

fou
nd.

•B
as

em
en

t(
kn

g,
km

g,
x)

n
≤

m
•A

dj
Ma

tr
ix

(g
)

•A
dj

ac
en

y(
g,

v)

•A
dj

ac
en

ci
es

(g
)

•V
er

te
xD

eg
re

es
(g

)
•E

dg
es

(g
)

•C
om

pl
et

es
Of

Gi
ve

nO
rd

er
(g

,o
)

•C
on

ne
ct

ed
Co

mp
on

en
ts

(g
)

•G
ra

ph
At

tr
ib

ut
eS

ta
ti

st
ic

s(
n,

p,
F)
Ret
urn
si
nfo
rma

tion
abo
ut

the
par
am
ete
rFf
or1

00r
and
om
gra
phs

ofo
rde
rn
and

edg
ep
rob
-

abi
lity

p
.

•B
ou

nd
ar

yV
er

ti
ce

s(
g)
For

g
atr
ian
gul
atio
no
fa
com

pac
tsu
rfac
e,

retu
rns
the
list
ofv
erti
ces
wh
ose

link
isis
om
orp
hic
toa

pat
h.

•I
nt

er
io

rV
er

ti
ce

s(
g)

•S
pa

nn
in

gF
or

es
tE

dg
es

(g
)

Dis
tan
ces

•D
is

ta
nc

e(
g,

x,
y)

•D
is

ta
nc

eM
at

ri
x(

g)
•D

ia
me

te
r(

g)
•E

cc
en

tr
ic

it
y(

g,
x)

•R
ad

iu
s(

g)
•D

is
ta

nc
es

(g
,a

,b
)
a
,ba
rel
ists

ofv
erti
ces
.Re
tur
nsa

list.
•D

is
ta

nc
eS

et
(g

,a
,b

)
As
bef
ore
,bu
tre
tur
nsa

set
.

•D
is

ta
nc

eG
ra

ph
(g

,d
)
The

gra
ph
wit
hv
erte

xse
tth
ev
erti
ces

ofg
,

two
ver
tice
sad

jace
nti
fth
eir
dist
anc
eis

ind
.

•P
ow

er
Gr

ap
h(

g,
n)
Sam

ea
sth

ed
ista
nce

gra
ph
wit
hs
eto

fd
is-

tan
ce{

1
,.
..
,n
}.

Gra
ph
mo
rph
ism
s

•I
so

Mo
rp

hi
sm

s(
g,

h)

•A
ut

om
or

ph
is

mG
ro

up
(g

)
•M

or
ph

is
m(

g,
h)
,Mo

rp
hi

sm
s(

g,
h)
,Ne

xt
Mo

rp
hi

sm
(g

,h
,f

)
•M

on
oM

or
ph

is
m(

g,
h)
,Mo

no
Mo

rp
hi

sm
s(

g,
h)
,Ne

xt
Mo

no
Mo

rp
hi

sm
(g

,h
,f

)
•E

pi
Mo

rp
hi

sm
(g

,h
),E

pi
Mo

rp
hi

sm
s(

g,
h)
,Ne

xt
Ep

iM
or

ph
is

m(
g,

h,
f)

•W
ea

kM
or

ph
is

m(
g,

h)
,We

ak
Mo

rp
hi

sm
s(

g,
h)
,Ne

xt
We

ak
Mo

rp
hi

sm
(g

,h
,f

),
and

mo
rep

red
efin
ed
clas
ses

ofm
orp
hism

sa
nd
the

pos
sibi
lity

tod
efin
en
ew
clas
ses

Sm
all
Gra
phs

•C
on

ne
ct

ed
Gr

ap
hs

Of
Gi

ve
nO

rd
er

(n
)
Up
ton

=
9
.

•G
ra

ph
6T

oG
ra

ph
(s

)
s
isa

stri
ng.

•G
ra

ph
sO

fG
iv

en
Or

de
r(

n)
Up
ton

=
9
.

•I
mp

or
tG

ra
ph

6(
f)

f
isa

file
nam

e.
Gra
ph
cat
ego
ries

•D
ef

au
lt

Gr
ap

hC
at

eg
or

y
A

var
iab
le

tha
t
hol
ds

the
cur
-

ren
t
gra
ph

cat
ego
ry.

Has
to

be
set

wit
h,

e.g
.

Se
tD

ef
au

lt
Ca

te
go

ry
(O

ri
en

te
dG

ra
ph

s)

Gra
ph
cat
ego
ries

:
Gr

ap
hs
,

Un
di

re
ct

ed
Gr

ap
hs
,

Lo
op

le
ss

Gr
ap

hs
,

Si
mp

le
Gr

ap
hs
,

Or
ie

nt
ed

Gr
ap

hs
.

Dig
rap
hs

•I
nN

ei
gh

(g
,x

)
List

ofi
n-n
eig
hbo

rso
fx
ing
.

•I
sT

ou
rn

am
en

t(
g)

•I
sT

ra
ns

it
iv

eT
ou

rn
am

en
t(

g)

•O
ri

en
ta

ti
on

s(
g)
List

ofa
llor
ien
ted
gra
phs

tha
tca
nb
eo
bta
ine
d

from
g

Dra
w

•D
ra

w(
g)
Sho
ws
aw
ind
ow
wit
ha
dra
win
go
fg.
Com

ma
nds

int
he

dr
aw
win
dow

:h:h
elp
,f:fi

tgr
aph
,l:
tog
gle
lab
els,

d:t
ogg
led
yna
m-

ics,
r:t
ogg
ler
epu
lsio
n,s
:sa
ve&

qui
t,q:

qui
tw
itho

uts
avin

g
Bac
ktr
ack

Exa
mp
le:
colo

ring
wit
htw

oco
lors
:

g:
=P

at
hG

ra
ph

(3
);

ch
k:

=f
un

ct
io

n(
L,

g)
lo

ca
l

x,
y;

if
L=

[]
th

en
re

tu
rn

tr
ue

;
fi

;
x:

=L
en

gt
h(

L)
;

fo
r

y
in

[1
..

x-
1]

do
if

Is
Ed

ge
(g

,[
x,

y]
)

an
d

L[
x]

=L
[y

]
th

en
re

tu
rn

fa
ls

e;
fi

;
od

;
re

tu
rn

tr
ue

;
en

d; the
nB

ac
kt

ra
ck

Ba
g(

[0
,1

],
ch

k,
Or

de
r(

g)
,g

);
retu

rns
[

[
0,

1,
0

],
[

1,
0,

1
]

].

Chapter 3

Cliques and Clique Graphs

A clique is a maximal complete subgraph (other texts use maxclique for this concept). It is
common to identify induced subgraphs of a graph with their vertex sets; accordingly, a clique in
YAGS is actually a set of vertices of a graph such that any two vertices in the clique are adjacent
in the considered graph.

The clique graph, K(G), of a graph G is the intersection graph of all the cliques of G: Each
clique of G is a vertex of K(G), two of them are adjacent in K(G) if and only if they have a
non-empty intersection.

A number of YAGS’s features concerning cliques and clique graphs are described in this
chapter.

3.1 Cliques and Clique Number

You can get the set of all the cliques of a graph by means of Cliques (B.3.7); if you want to
know the completes of given order (maximal or not) you may use CompletesOfGivenOrder
(B.3.14) instead.

Example
gap> g:=SunGraph(4);;
gap> Cliques(g);
[[2, 4, 6, 8], [2, 3, 4], [1, 2, 8], [4, 5, 6], [6, 7, 8]]
gap> CompletesOfGivenOrder(g,3);
[[1, 2, 8], [2, 3, 4], [2, 4, 6], [2, 4, 8], [2, 6, 8],

[4, 5, 6], [4, 6, 8], [6, 7, 8]]
gap> CompletesOfGivenOrder(g,4);
[[2, 4, 6, 8]]

Note that CompletesOfGivenOrder uses a simple, straightforward backtracking algorithm,
whereas Cliques uses the Bron-Kerbosch algorithm [4] which in our experience is the best
algorithm for finding all cliques of a graph in practice. In particular, Cliques is much faster
than CompletesOfGivenOrder (when comparable).

In YAGS all graphs are immutable, that is, once created, all graphs always remain exactly
the same graph. If you need to modify a graph, you actually construct a new graph by copying

19

YAGS 20

the first graph and (for example) adding or deleting some edges (all of this in a single atomic
step) therefore creating a new immutable graph. All graph-modifying operations in YAGS (e.g.
AddEdges, RemoveEdges, etc.) work in this way. This is time-consuming if your work involves
many frequent graph editions. On the other hand, this design decision allows us to meaningfully
store all computed graph attributes within the graph itself: Since the graph is not going to change
ever, it will always have the same order, size, clique number, etc. YAGS does exactly this with
all graph attributes and properties. This means that no attribute is ever computed twice for the
same graph and in particular it has a very clear effect on computing time:

Example
gap> g:=RandomGraph(200);;
gap> Cliques(g);;time;
5784
gap> Cliques(g);;time;
0

The clique number, ω(G), is the order of a maximum clique (all cliques are maximal, but
they may be of several different orders). On the other hand, the number of cliques, is simply the
cardinality of the set of all cliques.

Example
gap> g:=SunGraph(4);;
gap> CliqueNumber(g);
4
gap> NumberOfCliques(g);
5

For random graphs with edge probability p and taking b := 1/p, it is known [2] that the
distribution of the clique number has a very concentrated peak around 2logb n− 2logb logb n+
2logb(

e
2):

Example
gap> GraphAttributeStatistics([10,20..70],1/2,CliqueNumber);
[[[3, 29], [4, 61], [5, 9], [6, 1]],

[[4, 5], [5, 64], [6, 31]],
[[5, 5], [6, 64], [7, 29], [8, 2]],
[[6, 20], [7, 72], [8, 8]],
[[7, 55], [8, 42], [9, 3]],
[[7, 17], [8, 75], [9, 7], [10, 1]],
[[8, 66], [9, 32], [10, 2]]]

gap> List([10,20..70],n->2*Log2(Float(n))
> -2*Log2(Log2(Float(n))) + 2*Log2(FLOAT.E/2));
[4.0652, 5.3059, 6.10955, 6.70535, 7.17974, 7.57437, 7.91252]

Not so much the distribution of the number of cliques:
Example

gap> GraphAttributeStatistics([10,20..70],1/2,NumberOfCliques);
[[[7, 4], [8, 4], [9, 18], [10, 23], [11, 23],

[12, 13], [13, 8], [14, 5], [16, 1], [17, 1]],

YAGS 21

[[36, 1], [40, 2], [41, 3], [42, 1], [43, 4],
[44, 4], [45, 2], [46, 4], [47, 1], [48, 5],
[49, 2], [50, 1], [51, 5], [52, 6], [53, 6],
[54, 5], [55, 6], [56, 4], [57, 5], [58, 7],
[59, 4], [60, 2], [61, 3], [62, 3], [63, 4],
[64, 3], [66, 3], [67, 1], [68, 1], [72, 1],
[77, 1]],

[[130, 1], [133, 1], [135, 1], [137, 1], [142, 1],

--- many more lines here ---

[4626, 1], [4629, 1]]]

3.2 Clique Graphs

Whenever we have a graph G, we can compute its clique graph K(G), which is the intersection
graph of the cliques of G. Much work has been done on clique graphs [28][24][20] and they have
even been applied to Loop Quantum Gravity [26][25][27]. It is know that deciding whether a
given graph is a clique graph (G∼= K(H) for some H) is NP-complete [1].

Computing the clique graph of a graph is clearly an exponential time operation in the worst
case as the maximum number of cliques of a graph of order n is α×3

n−α

3 = Θ(3
n
3) [21] (here α

it taken such that α ∈ {2,3,4} and n ≡ α mod 3). However, very often the number of cliques
in a graph is much smaller; the following experiment shows that the number of cliques of a
graph on 50 vertices is likely between 700 and 1300 instead of the maximum possible which is
2×316 = 86093442.

Example
gap> GraphAttributeStatistics(50,1/2,NumberOfCliques);
[[756, 1], [762, 1], [770, 1], [795, 1], [826, 2],

[832, 1], [834, 1], [835, 1], [856, 1], [860, 1],
[861, 1], [867, 2], [870, 1], [871, 2], [872, 1],
[886, 1], [887, 1], [891, 1], [896, 1], [897, 2],
[898, 1], [905, 1], [911, 1], [916, 2], [920, 2],
[923, 2], [934, 1], [938, 1], [940, 1], [942, 1],
[943, 1], [944, 1], [949, 1], [953, 1], [963, 1],
[965, 1], [966, 1], [967, 2], [970, 1], [971, 1],
[972, 1], [973, 2], [975, 1], [978, 1], [985, 1],
[986, 1], [988, 1], [993, 1], [994, 2], [997, 1],
[998, 1], [999, 2], [1002, 1], [1008, 1], [1015, 1],
[1020, 2], [1022, 1], [1025, 1], [1026, 1], [1028, 1],
[1029, 1], [1034, 1], [1047, 1], [1049, 1], [1054, 1],
[1062, 1], [1067, 1], [1069, 1], [1071, 1], [1075, 1],
[1077, 1], [1087, 1], [1088, 1], [1097, 1], [1098, 1],
[1102, 1], [1135, 1], [1139, 1], [1154, 1], [1159, 2],
[1165, 1], [1187, 1], [1191, 1], [1192, 1], [1203, 1],
[1217, 1], [1236, 1]]

gap> 2*3^16;

YAGS 22

86093442

Therefore, we can often compute cliques and clique graphs in practice, despite the worst case
exponential time. Also, CliqueGraph is an attribute of graphs (as most operations in YAGS)
and hence, the result is stored within the graph in order to prevent unnecessary recalculation:

Example
gap> g:=RandomGraph(80);;
gap> kg:=CliqueGraph(g);;time;
26499
gap> kg2:=CliqueGraph(g);;time;
0
gap> kg2=kg;
true

Note that the last line in the previous example is not testing for isomorphism, it only tests
whether both adjacency matrices are equal. It remains possible, however, that the graph at hand
is one of those with a huge number of cliques. We can limit the maximum number of cliques
to be computed in Cliques and CliqueGraph using the optional extra parameter maxNumCli :
With this extra parameter, the computation is aborted when the number of computed cliques
reaches maxNumCli .

Example
gap> g:=OctahedralGraph(3);;
gap> CliqueGraph(g,1000);
Graph(Category := SimpleGraphs, Order := 8, Size :=
24, Adjacencies := [[2, 3, 4, 5, 6, 7], [1, 3, 4, 5, 6, 8],

[1, 2, 4, 5, 7, 8], [1, 2, 3, 6, 7, 8], [1, 2, 3, 6, 7, 8],
[1, 2, 4, 5, 7, 8], [1, 3, 4, 5, 6, 8], [2, 3, 4, 5, 6, 7]])

gap> g:=OctahedralGraph(30);; #this has 2^30=1073741824 cliques.
gap> CliqueGraph(g,1000);
fail

Alternatively we can use the InfoLevel mechanism (B.24.3) to be informed about the
progress of clique-related operations in YAGS. This way we can abort the calculation (by typing
Ctr-C) in case we see that it will take eons to finish.

In YAGS the vertices of a graph are always [1, 2, ..., Order(G)], but often they also
have some names. This names depend on the way in which the graph is constructed and reflect
the origin of the graph. We can get the names of the vertices by using VertexNames (B.22.3). In
the case of clique graphs, the vertex names are the corresponding cliques of the original graph.

Example
gap> g:=SunGraph(4);
Graph(Category := SimpleGraphs, Order := 8, Size :=
14, Adjacencies := [[2, 8], [1, 3, 4, 6, 8], [2, 4],

[2, 3, 5, 6, 8], [4, 6], [2, 4, 5, 7, 8], [6, 8],
[1, 2, 4, 6, 7]])

gap> kg:=CliqueGraph(g);

YAGS 23

Graph(Category := SimpleGraphs, Order := 5, Size :=
8, Adjacencies := [[2, 3, 4, 5], [1, 3, 4], [1, 2, 5],

[1, 2, 5], [1, 3, 4]])
gap> VertexNames(kg);
[[2, 4, 6, 8], [2, 3, 4], [1, 2, 8], [4, 5, 6], [6, 7, 8]]
gap> Cliques(g);
[[2, 4, 6, 8], [2, 3, 4], [1, 2, 8], [4, 5, 6], [6, 7, 8]]

Hence, in the previous example, vertex 1 of kg is (the one corresponding to) the clique [2,
4, 6, 8] of g, and vertex 2 is [2, 3, 4] etc.

3.3 Basements and Iterated Clique Graphs

Iterated clique graphs are obtained by applying the clique operator several times. As before,
we may wonder which vertices of K3(g) constitute the clique corresponding to some vertex of
K4(g) and this can be settled using VertexNames as explained in Section 3.2. But what if we
want to know which vertices of g constitute some vertex of K4(g)? This could be done using
VertexNames at level K4(g) and then transforming each of the obtained vertices (in K3(g))
using VertexNames of K3(g) and so on... but YAGS already has an operation that does exactly
that. The basement of a vertex x of an iterated clique graph Kn(g) with respect to some previous
iterated clique graph Km(g) (with m≤ n) is, roughly speaking, the set of vertices of Km(g) that
constitute the vertex x, that is, the set of vertices of Km(g) which are needed for x to exist (see
Basement (B.2.3) for a formal definition).

Example
gap> K:=CliqueGraph;
<Attribute "CliqueGraph">
gap> g:=Icosahedron;;Order(g);
12
gap> kg:=K(g);;Order(kg);
20
gap> k2g:=K(kg);;Order(k2g);
32
gap> k3g:=K(k2g);;Order(k3g);
92
gap> k4g:=K(k3g);;Order(k4g);
472
gap> VertexNames(kg)[1];VertexNames(kg)[3];
[1, 2, 3]
[1, 3, 4]
gap> Basement(g,kg,1);Basement(g,kg,3);
[1, 2, 3]
[1, 3, 4]
gap> VertexNames(k4g)[2];VertexNames(k4g)[9];
[1, 2, 55, 72, 73, 74, 80, 81, 82, 83, 84, 85, 88, 89, 90]
[1, 2, 3, 4, 10, 16, 81, 82, 85, 87, 88, 89]
gap> Basement(k3g,k4g,2);Basement(k3g,k4g,9);

YAGS 24

[1, 2, 55, 72, 73, 74, 80, 81, 82, 83, 84, 85, 88, 89, 90]
[1, 2, 3, 4, 10, 16, 81, 82, 85, 87, 88, 89]
gap> Basement(k2g,k4g,9);
[1, 2, 3, 4, 5, 6, 7, 17, 19, 24, 25, 27, 28, 29, 30, 31]
gap> Basement(kg,k4g,9);
[1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
gap> Basement(g,k4g,9);
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Basements where introduced (with a different name) in [3] and used again in [23]. They
have been useful to study distances and diameters on iterated clique graphs. They are also useful
when dealing with stars and neckties.

3.4 Stars and Neckties

Stars and neckties are useful in understanding the structure of iterated clique graphs.
Let G be a graph and x ∈ G. Let us define x∗ := {q ∈ K(G) : x ∈ q}. We say that x∗ is the

star of x. Observe that x∗ is (induces) a complete subgraph of K(G), and may or may not be a
clique of K(G) (i.e. a vertex of K2(G)) depending on whether the star of x is a maximal complete
subgraph or not.

On the other hand, a vertex in K2(G) is of the form Q := {q1,q2, . . . ,qr} where each qi is a
clique of G (i.e. a vertex of K(G)). We say that such clique of cliques Q is a star if there is some
vertex x ∈ G such that x ∈ qi for all qi ∈ Q; equivalently Q is a star if the total intersection of its
cliques is non-empty (i.e. ∩Q 6= ∅). When Q is not a star (i.e. when ∩Q = ∅), we say it is a
necktie. It is easy to show that a clique of cliques Q is a star if and only if its basement at G is
exactly the closed neighborhood of a vertex N[x].

Clearly, a star is also the star of some vertex and any star of a vertex which is a clique of
cliques is a star. On the other hand, if the star of a vertex x∗ is not a clique of cliques, it is surely
contained in some clique of cliques Q ∈ K2(G). If for each vertex x we pick such a fixed clique
of cliques ∗(x) := Q ∈ K2(G) with x∗ ⊆ Q, we get the star morphism ∗ : G→ K2(G).

A very remarkable feature of the second iterated clique graph K2(G) of G is that the star
morphism is often injective and even an isomorphism onto its image.

Example
gap> g:=Icosahedron;;
gap> kg:=K(g);;k2g:=K(kg);;
gap> ClosedNeighborhood:=function(g,x)
> return Union(Adjacency(g,x),[x]); end;
function(g, x) ... end
gap> closNeighs:=List(Vertices(g),x->ClosedNeighborhood(g,x));
[[1 .. 6], [1, 2, 3, 6, 9, 10], [1, 2, 3, 4, 10, 11],

[1, 3, 4, 5, 7, 11], [1, 4, 5, 6, 7, 8], [1, 2, 5, 6, 8, 9],
[4, 5, 7, 8, 11, 12], [5, 6, 7, 8, 9, 12],
[2, 6, 8, 9, 10, 12], [2, 3, 9, 10, 11, 12],
[3, 4, 7, 10, 11, 12], [7 .. 12]]

gap> stars:=Filtered(Vertices(k2g),

YAGS 25

> Q->Basement(g,k2g,Q) in closNeighs);
[1, 3, 5, 8, 10, 12, 15, 18, 21, 24, 27, 30]
gap> h:=InducedSubgraph(k2g,stars);;
gap> IsIsomorphicGraph(g,h);
true

Hence K2(G) is the union of two subgraphs (with some extra edges between them): One
composed entirely of stars and the other composed entirely of neckties. The one composed
entirely of stars is very similar to G and often even isomorphic to G.

A graph is clique-Helly when every family of pairwise intersecting cliques has a non-empty
total intersection. Evidently, if G is clique-Helly, then every vertex of K2(G) is a star. Escalante
[6] showed that in the clique-Helly case, K2(G) is isomorphic to a subgraph of G, namely, the
ParedGraph (B.16.4) of G (which just removes dominated vertices) and hence the star mor-
phism in the clique-Helly case is an isomorphism exactly when G does not have dominated
vertices.

Example
gap> g:=BoxTimesProduct(CycleGraph(4),PathGraph(4));;Order(g);
16
gap> IsCliqueHelly(g);
true
gap> k2g:=K(K(g));;pg:=ParedGraph(g);;Order(pg);
8
gap> IsIsomorphicGraph(k2g,pg);
true
gap> k4g:=K(K(k2g));;p2g:=ParedGraph(pg);;Order(p2g);
4
gap> IsIsomorphicGraph(k4g,p2g);
true
gap> DominatedVertices(k4g);
[]
gap> IsIsomorphicGraph(k4g,K(K(k4g)));
true

3.5 Clique Behavior

When we have a graph G and its iterated clique graphs K(G),K2(G),K3(G), . . . a natural ques-
tion is: Are all the graphs in the sequence non-isomorphic to each other? The answer is "no"
if and only if Kn(G) ∼= Km(G) for some n 6= m if and only if there is a finite bound for the
sequence of orders of the iterated clique graphs |Kn(G)|. When this happens, we say that G is
clique convergent and otherwise, we say that it is clique divergent. To determine the clique be-
havior of a graph consist in deciding whether it is clique convergent or clique divergent. It is an
open problem whether the clique behavior is algorithmically decidable or not [16] and Meidanis
even asked if the clique operator has the computing power needed to simulate any Turing Ma-
chine, see http://www.ic.unicamp.br/~meidanis/research/clique/ (fetched in 2001),
but that does not prevent us from trying to determine clique behavior for specific graphs.

http://www.ic.unicamp.br/~meidanis/research/clique/

YAGS 26

The first thing to try when determining the clique behavior of a graph is simply to iterate the
clique operator on it and check for the orders, if we see the order stabilizes, we have a candidate
where we can check for isomorphism.

Example
gap> g:=TimesProduct(Icosahedron,CompleteGraph(3));;Order(g);
36
gap> g1:=K(g);;Order(g1);
120
gap> g2:=K(g1);;Order(g2);
156
gap> g3:=K(g2);;Order(g3);
120
gap> IsIsomorphicGraph(g1,g3);
true

Often however, the orders just keep growing. But then the second thing to try (or even the
first!) is to take the CompletelyParedGraph (B.3.12) of G since it is known that the clique
behavior is invariant under removal of dominated vertices [7]. In the following example g is
clique convergent because h is so, even if a direct calculation of the iterated clique graphs of g
just ends in memory overflow.

Example
gap> cp7:=ComplementGraph(PathGraph(7));;
gap> g:=ComplementGraph(TimesProduct(cp7,cp7));;Order(g);
49
gap> g1:=K(g);;Order(g1);
204
gap> g2:=K(g1);;Order(g2);
7193
gap> g3:=K(g2);;Order(g3);

--- user interrupt or recursion trap here ---
brk> quit;
gap> h:=CompletelyParedGraph(g);;Order(h);
1
gap> IsIsomorphicGraph(h,K(h));
true

It is even advisable construct the combined operator PK (compute the clique graph and
then take the completely pared graph) and to compute the sequence of graphs under the iterated
application of the PK operator: (PK)n(G) is clique convergent (for any n) if and only if G is
clique convergent.

Example
gap> g:=WheelGraph(4,4);;Order(g);
17
gap> g1:=K(g);;Order(g1);
28
gap> g2:=K(g1);;Order(g2);

YAGS 27

37
gap> g3:=K(g2);;Order(g3);
60
gap> g4:=K(g3);;Order(g4);
185
gap> g5:=K(g4);;Order(g5);
2868
gap> #too many cliques to continue in this way.
gap> PK:=function(g) return CompletelyParedGraph(K(g)); end;
function(g) ... end
gap> h1:=PK(g);;Order(h1);
24
gap> h2:=PK(h1);;Order(h2);
25
gap> h3:=PK(h2);;Order(h1);
24
gap> h3:=PK(h2);;Order(h3);
16
gap> h4:=PK(h3);;Order(h4);
13
gap> h5:=PK(h4);;Order(h5);
8
gap> h6:=PK(h5);;Order(h6);
1
gap> IsIsomorphicGraph(h6,K(h6));
true

If a graph is clique convergent, it must also be convergent under the PK operator; It is an
open problem to determine whether the opposite is also true.

If G is clique convergent, then in principle we can determine that by computer (although
there are sometimes insufficient memory or time) but that is not so for clique divergent graphs.
Determining clique divergence for graphs can be quite challenging and there is even a graph on
eight vertices (the SnubDisphenoid) which seems to be divergent but nobody has a proof of it
yet [17].

Example
gap> g:=SnubDisphenoid;
Graph(Category := SimpleGraphs, Order := 8, Size :=
18, Adjacencies := [[2, 3, 4, 5, 8], [1, 3, 6, 7, 8],

[1, 2, 4, 6], [1, 3, 5, 6], [1, 4, 6, 7, 8],
[2, 3, 4, 5, 7], [2, 5, 6, 8], [1, 2, 5, 7]])

gap> g1:=K(g);;Order(g1);
12
gap> g2:=K(g1);;Order(g2);
20
gap> g3:=K(g2);;Order(g3);
56
gap> g4:=K(g3);;Order(g4);
1076

YAGS 28

The fifth iterated clique graphs of the SnubDisphenoid has at least 7.37×109 vertices, but
it is estimated that the number is more likely around 1022.

How to proceed then? Well there are many studied families of graphs whose clique behavior
have been settled (including: the octahedral graphs, cographs, regular locally cyclic graphs (like
the Icosahedron and the locally C6 graphs), some circulants, clockworkgraphs, some compara-
bility graphs, locally colorable graphs) and some techniques that may be applicable (including:
retractions, covering maps, expansivity, rank-divergence, dismantlings, local cutpoints).

Two of these techniques have been successful more often than others:
(1) If your graph G has a non-trivial automorphism f : G→G that sends each vertex outside

of its closed neighborhood (f (x) 6∈ N[x]), then there are chances that you can apply the rank-
divergence techniques [17][18].

(2) If your graph G is more like a random graph, then there are good chances that it has
a retraction to a d-dimensional octahedron with at least 6 vertices, which implies the diver-
gence of G [22]. In our experience, a good way to look up for such a retraction is to find the
cliques of G and then try to see if any of the cliques extends in G to an induced octahedral graph
(OctahedralGraph (B.15.1)) of at least 6 vertices. The existence of an induced octahedral sub-
graph with one of its faces being a clique of G is sufficient to prove the existence of a retraction
from G to the octahedral subgraph [11][19].

We plan to incorporate soon an operation that applies the known techniques for clique diver-
gence and convergence to a given graph in order to try to determine its clique behavior.

Chapter 4

Graph Categories

By default, all graphs in YAGS are simple, i.e. all graphs belong to the SimpleGraphs cate-
gory. There are 5 graph categories in YAGS, namely: Graphs (B.7.13), UndirectedGraphs
(B.21.3), LooplessGraphs (B.12.4), SimpleGraphs (B.19.3) and OrientedGraphs (B.15.5).
The inclusion relations among them is as follows:

UndirectedGraphs

Graphs

SimpleGraphs

LooplessGraphs

OrientedGraphs

The most general of these categories is Graphs: every graph in YAGS belongs to some
category and, by inclusion, every graph belongs to the category Graphs. By definition a graph
in Graphs may contain loops, arrows and edges (which in YAGS are exactly the same as two
opposite arrows); another way to say it, is that a graph is anything that can be represented as a
binary matrix (its adjacency matrix). In particular, no multiple/parallel edges/arrows are allowed
in a graph in YAGS. Likewise, each of the YAGS’s graph categories have their own characteristic
properties:

Graphs May contain loops, arrows and edges.
UndirectedGraphs Can not contain plain arrows (only edges and loops).
LooplessGraphs Can not contain loops (only arrows and edges).
SimpleGraphs Can not contain loops nor arrows (only edges).
OrientedGraphs Can not contain edges nor loops (only arrows).

Graph categories simplify things for users: for example in the category SimpleGraphs, a
complete graph may be defined as a graph containing “all possible edges” among their ver-
tices, but “all possible edges” in the category Graphs includes the loops, while in the category
OrientedGraphs, it can only contain one arrow for each pair of vertices.

29

YAGS 30

The graph category used for constructing graphs forbids you to add a loop accidentally or
to forget to include one of the arrows that constitute an edge in a simple graph: Every graph
created in YAGS is forced to comply with its graph category’s characteristic properties.

YAGS supports several mechanisms to carefully control the graphs categories used to con-
struct your graphs. These are explained in the following sections.

4.1 The Default Graph Category

The DefaultGraphCategory controls (in the absence of other indications) the graph category
to which the new graphs belong. It can not be changed directly as if it were a normal variable,
instead, it can be changed by the method SetDefaultGraphCategory (B.19.2)

Example
gap> DefaultGraphCategory;
<Category "SimpleGraphs">
gap> SetDefaultGraphCategory(OrientedGraphs);
gap> DefaultGraphCategory;
<Category "OrientedGraphs">
gap> DefaultGraphCategory:=LooplessGraphs;
Error, Variable: ’DefaultGraphCategory’ is read only

The effect on the constructed graphs is very noticeable: look at the adjacencies of these
graphs:

Example
gap> SetDefaultGraphCategory(Graphs);CompleteGraph(4);
Graph(Category := Graphs, Order := 4, Size := 16, Adjacencies :=
[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
gap> SetDefaultGraphCategory(LooplessGraphs);CompleteGraph(4);
Graph(Category := LooplessGraphs, Order := 4, Size :=
12, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])
gap> SetDefaultGraphCategory(UndirectedGraphs);CompleteGraph(4);
Graph(Category := UndirectedGraphs, Order := 4, Size :=
10, Adjacencies := [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4],

[1, 2, 3, 4]])
gap> SetDefaultGraphCategory(OrientedGraphs);CompleteGraph(4);
Graph(Category := OrientedGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [3, 4], [4], []])
gap> SetDefaultGraphCategory(SimpleGraphs);CompleteGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])

When constructing a graph, YAGS always forces the new graphs to comply with its category,
hence, in the case of OrientedGraphs in the previous example, it has to remove one of the
arrows conforming the edge for each pair of vertices of the graph. Sometimes it may not be
evident which arrow will YAGS choose to remove, but in general, YAGS tries to make sense:

YAGS 31

Example
gap> SetDefaultGraphCategory(OrientedGraphs);
gap> CycleGraph(4); PathGraph(4); GraphByWalks([1..5],[3,5,1]);
Graph(Category := OrientedGraphs, Order := 4, Size :=
4, Adjacencies := [[2], [3], [4], [1]])
Graph(Category := OrientedGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [3], [4], []])
Graph(Category := OrientedGraphs, Order := 5, Size :=
6, Adjacencies := [[2], [3], [4, 5], [5], [1]])
gap> SetDefaultGraphCategory(SimpleGraphs);
gap> CycleGraph(4); PathGraph(4); GraphByWalks([1..5],[3,5,1]);
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [1, 3], [2, 4], [3]])
Graph(Category := SimpleGraphs, Order := 5, Size :=
6, Adjacencies := [[2, 5], [1, 3], [2, 4, 5], [3, 5],

[1, 3, 4]])

Therefore, if you always work with SimpleGraphs, YAGS defaults are perfect for you. If, in
the other hand you always work with OrientedGraphs (also known as digraphs), you probably
would want to start all your sessions by changing the default graph category to that... or even
better, you may want to create a startup file that does that automatically every time you start a
YAGS session.

On the other hand, your work may involve graphs from more than one graph category. In
such a case, it is advisable to continue reading all of this chapter.

4.2 The Target Graph Category

The default graph category is only part of the story. When constructing new graphs from existing
ones, it may be natural to construct the new graph in the least common category that contains
the original graphs, regardless of the DefaultGraphCategory.

For instance, if we have graphs g and h that belong to the categories of SimpleGraphs and
OrientedGraphs (respectively), then a new graph which is the BoxTimesProduct (also known
as the strong product) of them, should belong to the least common category of both, namely to
the LooplessGraphs category (see the diagram at the beginning of the chapter). This is what
YAGS does:

Example
gap> SetDefaultGraphCategory(SimpleGraphs);
gap> g:=PathGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [1, 3], [2, 4], [3]])
gap> SetDefaultGraphCategory(OrientedGraphs);
gap> h:=PathGraph(4);
Graph(Category := OrientedGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [3], [4], []])

YAGS 32

gap> SetDefaultGraphCategory(UndirectedGraphs);
gap> s:=BoxTimesProduct(g,h);
Graph(Category := LooplessGraphs, Order := 16, Size :=
54, Adjacencies := [[2, 5, 6], [3, 6, 7], [4, 7, 8], [8],

[1, 2, 6, 9, 10], [2, 3, 7, 10, 11], [3, 4, 8, 11, 12],
[4, 12], [5, 6, 10, 13, 14], [6, 7, 11, 14, 15],
[7, 8, 12, 15, 16], [8, 16], [9, 10, 14], [10, 11, 15],
[11, 12, 16], [12]])

gap> s in UndirectedGraphs; s in LooplessGraphs;
false
true
gap> DefaultGraphCategory;
<Category "UndirectedGraphs">

Exactly how does YAGS decide this? Well, with very few and evident exceptions (such
as Orientations (B.15.4)), YAGS’s functions that construct graphs, always calls internally
the function TargetGraphCategory (B.20.1), and passes to it those of the original parameters
which are graphs.

TargetGraphCategory returns the graph category indicated by GAP’s options stack if any
(see the next section), else it returns the least common category containing all of its param-
eters if any, or else (if it is called without parameters), TargetGraphCategory returns the
DefaultGraphCategory.

4.3 Changing the Target Graph Category in Place

GAP provides a wonderful feature named options stack. Consult GAP’s documentation on the
topic for a full explanation. For YAGS purposes, the short story is that you may specify the
desired graph category directly in the same command used to construct the graph without the
need to change the default graph category as in the following example:

Example
gap> SetDefaultGraphCategory(Graphs);
gap> DefaultGraphCategory;
<Category "Graphs">
gap> g1:=CompleteGraph(4);
Graph(Category := Graphs, Order := 4, Size := 16, Adjacencies :=
[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
gap> DefaultGraphCategory;
<Category "Graphs">
gap> g2:=CompleteGraph(4:GraphCategory:=SimpleGraphs);
Graph(Category := SimpleGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])
gap> DefaultGraphCategory;
<Category "Graphs">
gap> g3:=CompleteGraph(4:GraphCategory:=OrientedGraphs);
Graph(Category := OrientedGraphs, Order := 4, Size :=

YAGS 33

6, Adjacencies := [[2, 3, 4], [3, 4], [4], []])
gap> DefaultGraphCategory;
<Category "Graphs">
gap> h:=DisjointUnion(g2,g3);
Graph(Category := LooplessGraphs, Order := 8, Size :=
18, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3], [6, 7, 8], [7, 8], [8], []])
gap> DefaultGraphCategory;
<Category "Graphs">
gap> h2:=DisjointUnion(g2,g3:GraphCategory:=UndirectedGraphs);
Graph(Category := UndirectedGraphs, Order := 8, Size :=
12, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3], [6, 7, 8], [5, 7, 8], [5, 6, 8], [5, 6, 7]])
gap> DefaultGraphCategory;
<Category "Graphs">

This method of specifying the desired category is useful to copy a graph from one category to
another using CopyGraph (B.3.20):

Example
gap> SetDefaultGraphCategory(SimpleGraphs);
gap> g:=PathGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [1, 3], [2, 4], [3]])
gap> h:=CopyGraph(g:GraphCategory:=OrientedGraphs);
Graph(Category := OrientedGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [3], [4], []])

Chapter 5

Morphisms of Graphs

5.1 A Quick Start

A morphism of graphs f : G→ H (Also known as homomorphisms) is a function from the
vertex set of one graph to the vertex set of another, f : V (G)→ V (H), such that some prop-
erties (adjacency for instance) are preserved. In YAGS such a function is represented by a
list F=[f(1),f(2),...f(n)]. For instance, the list F=[2,3,4,3] represents a morphism that
maps vertex 1 of G onto vertex 2 of H and also maps 2 to 3, 3 to 4 and 4 to 3. In this example, F
implicitly says that G has exactly 4 vertices and that H has at least 4 vertices.

YAGS has a very rich and flexible set of operations to deal with graph morphisms which we
describe in the next sections. All these operations report progress at InfoLevel 3 (see B.24.3
and Section 6.4).

Here we describe only the most used ones. The operations dealing with morphisms are
organized in triplets, like the following one:

FullMonoMorphism(G,H)
FullMonoMorphisms(G,H)
NextFullMonoMorphism(G,H,F)

All three of these operations refer to the same kind of morphisms, f , which are Morphisms
(the image of an edge is an edge), Mono (vertex-injective) and Full (i.e. f (x) f (y) ∈ E(H)⇒
∃x′y′ ∈ E(G) with f (x′y′) = f (x) f (y)). The first two operations simply return either one or all
the morphisms between two given graphs:

Example
gap> p3:=PathGraph(3);c4:=CycleGraph(4);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])
gap> FullMonoMorphism(p3,c4);
[1, 2, 3]
gap> FullMonoMorphisms(p3,c4);

34

YAGS 35

[[1, 2, 3], [1, 4, 3], [2, 1, 4], [2, 3, 4], [3, 2, 1],
[3, 4, 1], [4, 1, 2], [4, 3, 2]]

The third operation, NextFullMonoMorphism receives as parameters, besides the two given
graphs, a partial morphism F. As you may have guessed a partial morphism is any prefix of a
morphism, so in case [1, 2, 3] is a morphism, it follows that [1, 2, 3], [1, 2], [
1] and [] are partial morphisms.

Our operation NextFullMonoMorphism then, returns the next morphism, then one following
the given partial morphism F in lexicographic order. It also stores this next morphism in the
variable F so we can iteratively call NextFullMonoMorphism to obtain all morphisms one by
one:

Example
gap> p3:=PathGraph(3);;c4:=CycleGraph(4);;
gap> f:=[3,4];;NextFullMonoMorphism(p3,c4,f);
[3, 4, 1]
gap> f;
[3, 4, 1]
gap> NextFullMonoMorphism(p3,c4,f);
[4, 1, 2]
gap> f;
[4, 1, 2]
gap> NextFullMonoMorphism(p3,c4,f);
[4, 3, 2]
gap> NextFullMonoMorphism(p3,c4,f);
fail
gap> f;
[fail]
gap> NextFullMonoMorphism(p3,c4,f);
[1, 2, 3]
gap> NextFullMonoMorphism(p3,c4,f);
[1, 4, 3]
gap> f:=[];
[]
gap> NextFullMonoMorphism(p3,c4,f);
[1, 2, 3]
gap> NextFullMonoMorphism(p3,c4,f);
[1, 4, 3]

Note that f:=[] and f:=[fail] are always considered partial morphisms; these are use-
ful to compute the first morphism and to report when there are no more morphisms to find. Please
note that NextFullMonoMorphism will not check whether the given partial morphism is actually
a partial morphism. This is done this way for efficiency, since actually both FullMonoMorphism
and FullMonoMorphisms are implemented in terms of NextFullMonoMorphism.

NextFullMonoMorphism is useful when the set of all morphisms from G to H is too big:
This way, given enough time, we can process all of the morphisms one by one even if the set of
all morphisms does not fit in memory.

YAGS 36

The reader, may have noticed that these operations are precisely what is needed to implement
IsInducedSubgraph:

Example
gap> IsInducedSubgraph:=function(h,g)
> return FullMonoMorphism(h,g)<>fail; end;
function(h, g) ... end
gap> IsInducedSubgraph(PathGraph(3),CycleGraph(4));
true
gap> IsInducedSubgraph(PathGraph(4),CycleGraph(4));
false

If your morphisms of choice are not Full nor Mono, you can simply use:

Morphism(G,H)
Morphisms(G,H)
NextMorphism(G,H,F)

just like we did with the previous triplet of operations.
Example

gap> Morphism(PathGraph(3),CycleGraph(4));
[1, 2, 1]
gap> Morphisms(PathGraph(3),CycleGraph(4));
[[1, 2, 1], [1, 2, 3], [1, 4, 1], [1, 4, 3], [2, 1, 2],

[2, 1, 4], [2, 3, 2], [2, 3, 4], [3, 2, 1], [3, 2, 3],
[3, 4, 1], [3, 4, 3], [4, 1, 2], [4, 1, 4], [4, 3, 2],
[4, 3, 4]]

gap> f:=[4,3];NextMorphism(PathGraph(3),CycleGraph(4),f);
[4, 3]
[4, 3, 2]
gap> NextMorphism(PathGraph(3),CycleGraph(4),f);
[4, 3, 4]
gap> NextMorphism(PathGraph(3),CycleGraph(4),f);
fail
gap> NextMorphism(PathGraph(3),CycleGraph(4),f);
[1, 2, 1]

Also, this particular type of morphisms is what we need to implement IsKColorable:
Example

gap> IsKColorable:=function(g,k)
> return Morphism(g,CompleteGraph(k))<>fail; end;
function(g, k) ... end
gap> IsKColorable(CycleGraph(6),2);
true
gap> IsKColorable(CycleGraph(5),2);
false
gap> IsKColorable(CycleGraph(5),3);
true

The full list of predefined types of morphisms that YAGS knows about is explained in the next
section.

YAGS 37

5.2 Predefined Types of Morphisms

Following the same organization of operations in triplets as explained in the previous section,
we present now the full list of YAGS’s operations for predefined types of morphisms. The
operations that start with a hash mark (#) are not yet implemented, but they are there as a place
holders for a future implementation.

Operations for predefined types of morphisms
NextMetricMorphism(G,H,F)
NextEpiMetricMorphism(G,H,F)
NextMonoMorphism(G,H,F)
NextFullMonoMorphism(G,H,F)
NextBiMorphism(G,H,F)
NextFullBiMorphism(G,H,F)
NextCompleteEpiWeakMorphism(G,H,F)
NextCompleteEpiMorphism(G,H,F)
NextCompleteWeakMorphism(G,H,F)
NextCompleteMorphism(G,H,F)
#NextFullEpiWeakMorphism(G,H,F)
#NextFullEpiMorphism(G,H,F)
#NextFullWeakMorphism(G,H,F)
#NextFullMorphism(G,H,F)
NextEpiWeakMorphism(G,H,F)
NextEpiMorphism(G,H,F)
NextWeakMorphism(G,H,F)
NextMorphism(G,H,F)

MetricMorphism(G,H)
EpiMetricMorphism(G,H)
MonoMorphism(G,H)
FullMonoMorphism(G,H)
BiMorphism(G,H)
FullBiMorphism(G,H)
CompleteEpiWeakMorphism(G,H)
CompleteEpiMorphism(G,H)
CompleteWeakMorphism(G,H)
CompleteMorphism(G,H)
#FullEpiWeakMorphism(G,H)
#FullEpiMorphism(G,H)
#FullWeakMorphism(G,H)
#FullMorphism(G,H)
EpiWeakMorphism(G,H)
EpiMorphism(G,H)
WeakMorphism(G,H)
Morphism(G,H)

MetricMorphisms(G,H)
EpiMetricMorphisms(G,H)
MonoMorphisms(G,H)
FullMonoMorphisms(G,H)

YAGS 38

BiMorphisms(G,H)
FullBiMorphisms(G,H)
CompleteEpiWeakMorphisms(G,H)
CompleteEpiMorphisms(G,H)
CompleteWeakMorphisms(G,H)
CompleteMorphisms(G,H)
#FullEpiWeakMorphisms(G,H)
#FullEpiMorphisms(G,H)
#FullWeakMorphisms(G,H)
#FullMorphisms(G,H)
EpiWeakMorphisms(G,H)
EpiMorphisms(G,H)
WeakMorphisms(G,H)
Morphisms(G,H)

Here, several name fragments are used in a uniform way:

• Morphism: The images of adjacent vertices are adjacent (except with prefix Weak).

• Weak: Weakens the notion of morphism so that it is allowed that adjacent vertices go
to equal ones. That is, a WeakMorphism is one where the images of adjacent-or-equal
vertices are also adjacent-or-equal.

• Epi: The morphism is vertex-surjective.

• Mono: The morphism is vertex-injective.

• Bi: The morphism is vertex-bijective.

• Full: f (x) f (y) ∈ E(H)⇒∃x′y′ ∈ E(G) with f (x′y′) = f (x) f (y).

• Complete: Whenever a pair of vertices x, y are mapped onto an edge of H, the pair [x,
y] is also an edge (of G).

• Metric: The image of any pair of vertices are at the same distance from each other as the
original pair of vertices.

All meaningful combinations of these name fragments are present in the full list of op-
erations for predefined types of morphisms. But note that some combinations are, by math-
ematical reasons, necessarily synonyms like FullBiMorphism = CompleteBiMorphism =
MetricBiMorphism; in such cases, only one of those names is selected for use in YAGS. Note
also that a FullBiMorphism is most commonly known as an isomorphism.

Indeed, YAGS knows about FullBiMorphisms and also about IsoMorphisms: the former
is implemented together with all the other operations listed in this section, using the general
schema explained in the next section, while the latter is implemented with different, more effi-
cient, ad-hoc methods. IsoMorphism is faster than FullBiMorphism, but FullBiMorphism is
part of a bigger, more flexible schema.

YAGS 39

5.3 Main Procedures

All the morphism operations listed in the previous section are implemented in a uniform, semi-
automatic way by means of the following triplet of operations, which are explained in their
indicated sections of the manual:

PropertyMorphism (B.16.9)
PropertyMorphisms (B.16.10)
NextPropertyMorphism (B.14.2)

In short, the relation of this triplet and the previous ones is best explained by a few examples:

This operation: Is the same as:
BiMorphism(G,H) PropertyMorphism(G,H,[CHK_MONO,CHK_EPI,CHK_MORPH])
MetricMorphism(G,H) PropertyMorphism(G,H,[CHK_METRIC,CHK_MORPH])
CompleteWeakMorphisms(G,H) PropertyMorphisms(G,H,[CHK_CMPLT,CHK_WEAK])
NextEpiMorphism(G,H,F) NextPropertyMorphism(G,H,F,[CHK_EPI,CHK_MORPH])

In the previous table, there are several predefined property-checking functions: CHK_METRIC,
CHK_CMPLT, CHK_MONO, CHK_EPI, CHK_WEAK and CHK_MORPH. These are functions that receive,
two graphs (G and H) and a partial morphism (F) as parameters and they return true whenever
F is a valid (feasible) partial morphism from G to H satisfying the required property (i.e. metric,
complete, mono, etc.); they all return false otherwise.

Example
gap> CHK_MORPH;
function(g1, g2, morph) ... end
gap> Print(CHK_MONO,"\n");
function (g1, g2, morph)

local x, y;
x := Length(morph);
y := morph[x];
if y in morph{[1 .. x - 1]} then

return false;
fi;
return true;

end
gap> Print(CHK_EPI,"\n");
function (g1, g2, morph)

return Order(g2) - Length(Set(morph))
<= Order(g1) - Length(morph);

end

Note that CHK_MONO assumes that only the last element in the partial morphism needs to be
verified for the sought property. This is correct in general since what NextPropertyMorphism
does is to continually try to construct a new (longer) partial morphism from an existing one, so

YAGS 40

the sought property was already checked in all prefixes of the current partial morphism (The pre-
cise technique used by NextPropertyMorphism is known as backtracking, and it is described
in the next chapter).

It is usually required to include at least one of CHK_WEAK or CHK_MORPH in the list of proper-
ties to check used by the PropertyMorphism triplet, since otherwise, no adjacency-preserving
function is ever verified and then the resulting maps are more properly named “functions” rather
than “morphisms”:

Example
gap> k2:=CompleteGraph(2);;I2:=DiscreteGraph(2);;
gap> PropertyMorphisms(k2,I2,[]);
[[1, 1], [1, 2], [2, 1], [2, 2]]

5.4 User-Defined Types of Morphisms

There is nothing special about YAGS predefined property-checking functions and the user may
write new ones. For example, if we would like to create a new type of weak morphism restricting
the mapping so that the image of a vertex always has a degree greater than or equal to that of the
vertex, then we could write:

Example
gap> checkdegree:=function(G,H,f)
> local x,fx;
> x:=Length(f);fx:=f[x];
> return VertexDegree(G,x)<=VertexDegree(H,fx);
> end;
function(G, H, f) ... end
gap> NextSpecialMorphism:=function(G,H,F)
> return NextPropertyMorphism(G,H,F,[CHK_WEAK,checkdegree]);
> end;
function(G, H, F) ... end
gap> c4:=CycleGraph(4);;p4:=PathGraph(4);;F:=[];;
gap> NextSpecialMorphism(c4,p4,F);
[2, 2, 2, 2]
gap> NextSpecialMorphism(c4,p4,F);
[2, 2, 2, 3]
gap> NextSpecialMorphism(c4,p4,F);
[2, 2, 3, 2]
gap> NextSpecialMorphism(c4,p4,F);
[2, 2, 3, 3]
gap> SpecialMorphisms:=function(G,H)
> return PropertyMorphisms(G,H,[CHK_WEAK,checkdegree]);
> end;
function(G, H) ... end
gap> SpecialMorphisms(c4,p4);
[[2, 2, 2, 2], [2, 2, 2, 3], [2, 2, 3, 2], [2, 2, 3, 3],

[2, 3, 2, 2], [2, 3, 2, 3], [2, 3, 3, 2], [2, 3, 3, 3],

YAGS 41

[3, 2, 2, 2], [3, 2, 2, 3], [3, 2, 3, 2], [3, 2, 3, 3],
[3, 3, 2, 2], [3, 3, 2, 3], [3, 3, 3, 2], [3, 3, 3, 3]]

Note that the property-checking functions must receive three parameters (namely, two graphs
G,H and a partial morphism F) and it is OK (and better for efficiency), if the function assumes
that all prefixes of the current partial morphism, already passed the test.

Since all morphism-related operations in YAGS use Backtrack (B.2.1), they all report
progress at InfoLevel 3 (see B.24.3 and Section 6.4). This is useful to have an idea of how
much additional time is needed for the current computation to finish and it is also useful for
debugging user-defined property-checking functions.

Chapter 6

Backtracking

Backtracking is an algorithmic technique for searching in combinatorial spaces: For instance,
when you need to find a particular function (morphism, coloring, etc) subject to some criterion
(isomorphism, proper coloring, etc).

In this chapter we describe the technique and the facilities provided by YAGS to aid in
the rapid prototyping of backtracking algorithms. This chapter is written for the non-expert
programmer, which is who can benefit the most from these facilities.

While the expert programmers will not have any problem designing their own backtracking
algorithms, they can still benefit from YAGS’s backtracking facilities since it may still be faster
to implement/test/prototype a backtracking algorithm using YAGS’s facilities. We recommend
the expert programmer to go directly to Backtrack (B.2.1) where a minimal non-trivial example
(for computing derangements) is shown.

The kind of combinatorial problems that can be addressed by backtracking are those that can
be represented by a decision tree: those where we have to make a succession of choices to find a
solution. These include problems where we want to find: morphisms, isomorphisms, cages, col-
orings, cliques, Hamiltonian cycles, walks, paths, subgraphs, and much, much more. Combina-
torial problems that can be represented by a decision tree are truly everywhere. YAGS backtrack-
ing facilities are provided by means of the operations BacktrackBag(Opts,Chk,Done,Extra)
and Backtrack(L,Opts,Chk,Done,Extra).

6.1 Simplest Examples: Using Opts and Done

As a concrete example consider graph colorings: You have a set of colors, say ["red",
"green"] and a graph, say g:=PathGraph(3), whose vertices are [1, 2, 3]. Then a col-
oring is a function f : {1,2,3} → {red,green}, which in YAGS would be represented by a List
L:=[f(1), f(2), f(3)]. There are (obviously) eight of such colorings, which are easy to
list using BacktrackBag(Opts,Chk,Done,Extra):

Example
gap> colors:=["red","green"];
["red", "green"]
gap> BacktrackBag(colors,ReturnTrue,3,[]);

42

YAGS 43

[["red", "red", "red"], ["red", "red", "green"],
["red", "green", "red"], ["red", "green", "green"],
["green", "red", "red"], ["green", "red", "green"],
["green", "green", "red"], ["green", "green", "green"]]

gap> Length(last);
8

In the previous example, only two parameters of BacktrackBag are really used, namely:
Opts (which stands for options) and Done; when used in this way, Opts is simply the codomain
of the sought function and Done is simply the size of the domain. When working with graph
colorings it is common to use numbers instead of actual colors or color names, so we could also
write even more compactly:

Example
gap> BacktrackBag([0,1],ReturnTrue,3,[]);
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0],

[1, 0, 1], [1, 1, 0], [1, 1, 1]]

Sometimes you just want a few solutions and not the whole bag. This is specially true when
the bag is too huge (which is often the case since the bag tend to grow exponentially in the size
of the domain). For these cases, we have Backtrack(L,Opts,Chk,Done,Extra):

Example
gap> L:=[];
[]
gap> Backtrack(L,[0,1],ReturnTrue,3,[]);
[0, 0, 0]
gap> L;
[0, 0, 0]
gap> Backtrack(L,[0,1],ReturnTrue,3,[]);
[0, 0, 1]
gap> L;
[0, 0, 1]
gap> L:=[1,1,0];
[1, 1, 0]
gap> Backtrack(L,[0,1],ReturnTrue,3,[]);
[1, 1, 1]
gap> L;
[1, 1, 1]
gap> Backtrack(L,[0,1],ReturnTrue,3,[]);
fail
gap> L;
[fail]

Backtrack(L,Opts,Chk,Done,Extra) returns one solution at a time and it also stores the
solution within L, so that L can be used as a starting point for the search of the next solution. Usu-
ally, L:=[] is used for the first search. When Calling Backtrack(L,Opts,Chk,Done,Extra),
L may also contain a partial solution (i.e. a prefix of a solution like L:=[1] or L:=[1, 0

YAGS 44

]), however Backtrack will trust the user on this and it will not check that L is indeed a partial
solution.

Backtrack returns fail when no more solutions are available, but for technical reasons, L
must always be a list, so L:=[fail] is the final value of L.

Now, so far, the graph itself have not been used and the parameters Chk and Extra have not
been explained. Both issues are addressed in the next section.

6.2 Full Examples: Using Chk and Extra

In Graph Theory we are usually more interested in proper colorings than just in colorings. A
proper coloring is a coloring in which no two adjacent vertices have the same color. We can
easily accommodate the new requirement within our backtracking operations. We are going to
use Chk to check the fulfillment of the condition at each step in the construction of a solution.
Moreover, in order to check the new condition we certainly need the extra information contained
in the graph we are coloring. This extra information (the graph) is passed in the Extra parameter.

More generally, Chk is a user-provided function Chk(L,Extra) which receives a partial
solution L and some extra information Extra; it returns false whenever it knows that L can not
be completed to a full solution and it returns true otherwise. Note then that our backtracking
operations internally call Chk several times during the process of constructing each solution:
once each time L grows in length. In each call to Chk it is safe to assume that all proper prefixes
of L have already been verified and approved by Chk.

In our example, L contains the color choices already made for the first vertices: 1, 2, ...
Length(L). It is safe to assume that all but the last choice are already checked to satisfy the
properness requirement. The last color choice so far is then the one in L[Length(L)] and we
have to check (within Chk) if it also satisfy the properness requirement. We can do it like this:

Example
gap> g:=PathGraph(3);;
gap> chk:=function(L,g)
> local x,y;
> if L=[] then return true; fi;
> x:=Length(L);
> for y in [1..x-1] do
> if IsEdge(g,[x,y]) and L[x]=L[y] then
> return false;
> fi;
> od;
> return true;
> end;
function(L, g) ... end
gap> BacktrackBag([0,1],chk,Order(g),g);
[[0, 1, 0], [1, 0, 1]]

Now we get only two solutions, as expected. We emphasize here the fact that Chk is inter-
nally called by BacktrackBag each time L grows in length. Therefore (for instance) at some

YAGS 45

point the partial solution [0, 0] is tried and since it is found unfeasible by Chk is is dis-
carded and no other partial solution with that prefix is ever tried. This produces huge reductions
in execution time as compared to the (naive) approach of computing all the colorings first and
then filtering out those which does not satisfy the properness requirement. In particular we can
compute proper colorings for graphs where the naive approach fails:

Example
gap> g:=PathGraph(70);;
gap> BacktrackBag([0,1],chk,Order(g),g);
[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1],

[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0]]

Of course, we can now compute proper colorings for many other graphs as well:
Example

gap> g:=CycleGraph(5);;
gap> BacktrackBag([0,1],chk,Order(g),g);
[]
gap> BacktrackBag([0,1,2],chk,Order(g),g);
[[0, 1, 0, 1, 2], [0, 1, 0, 2, 1], [0, 1, 2, 0, 1],

[0, 1, 2, 0, 2], [0, 1, 2, 1, 2], [0, 2, 0, 1, 2],
[0, 2, 0, 2, 1], [0, 2, 1, 0, 1], [0, 2, 1, 0, 2],
[0, 2, 1, 2, 1], [1, 0, 1, 0, 2], [1, 0, 1, 2, 0],
[1, 0, 2, 0, 2], [1, 0, 2, 1, 0], [1, 0, 2, 1, 2],
[1, 2, 0, 1, 0], [1, 2, 0, 1, 2], [1, 2, 0, 2, 0],
[1, 2, 1, 0, 2], [1, 2, 1, 2, 0], [2, 0, 1, 0, 1],
[2, 0, 1, 2, 0], [2, 0, 1, 2, 1], [2, 0, 2, 0, 1],
[2, 0, 2, 1, 0], [2, 1, 0, 1, 0], [2, 1, 0, 2, 0],
[2, 1, 0, 2, 1], [2, 1, 2, 0, 1], [2, 1, 2, 1, 0]]

gap> g:=Icosahedron;;
gap> Backtrack([],[0,1,2],chk,Order(g),g);
fail
gap> Backtrack([],[0,1,2,3],chk,Order(g),g);
[0, 1, 2, 1, 2, 3, 3, 0, 2, 3, 0, 1]

6.3 Advanced Examples: When Opts and Done are functions

Our backtracking operations BacktrackBag(Opts,Chk,Done,Extra) and
Backtrack(L,Opts,Chk,Done,Extra) are even more flexible that shown so far. In our
previous examples Opts was always a list and Done was always an integer. Both can also be
functions.

YAGS 46

When Opts is a function, it receives L and Extra, and then Opts(L,Extra) should return
the list of options available to extend the partial solution L at that particular stage. This way the
list of options can be different at different times which is useful for instance when the union of
all possible options is too big or even unbounded.

When Done is a function, it also receives L and Extra, and then Done(L,Extra) returns
true whenever L is a full solution and it returns false otherwise. This is useful when not
all the solutions have the same length. Thus the number N we used to put in place of the
function Done(L,Extra) is equivalent to the function Done:=function(L,Extra) return
Length(L) >= N; end;.

Also, when a number N is used in place of Done, an implicit upper bound Length(L)<= N is
added internally to Chk, so it is imperative to add such an explicit bound to Chk when a function
is used for Done otherwise the backtracking algorithm will try to find longer and longer solutions
without bound or end until the memory of the computer is exhausted.

As an example, assume we want to find all the walks on 5-cycle that start at vertex 1 and end
at vertex 2 with length at most 4 (at most 5 vertices). Then we can proceed as follows:

Example
gap> g:=CycleGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2, 5], [1, 3], [2, 4], [3, 5], [1, 4]
])

gap> opts:=function(L,g)
> if L=[] then
> return [1];
> else
> return Adjacency(g,L[Length(L)]);
> fi;
> end;
function(L, g) ... end
gap> chk:=function(L,g) return Length(L)<= 5; end;
function(L, g) ... end
gap> done:=function(L,g) return L[Length(L)]=2; end;
function(L, g) ... end
gap> BacktrackBag(opts,chk,done,g);
[[1, 2], [1, 2, 1, 2], [1, 2, 3, 2], [1, 5, 1, 2],

[1, 5, 4, 3, 2]]

Finally you may wonder why only one extra parameter Extra is allowed, what if I need
more than one? Well, the parameter Extra may be any object supported by GAP; indeed YAGS
only uses it to pass information to the user-defined functions Opts(L,Extra), Chk(L,Extra)
and Done(L,Extra). Hence, if you need pass more than one extra parameter, say two graphs g
and h, you just put them in a list (or record, etc) and pass the parameter Extra:=[g,h].

6.4 Debugging Backtracking Algorithms.

Sooner or later you will need to debug a backtracking algorithm that is not working as expected,
or at least, you would like to know how much work your algorithm has done and how much

YAGS 47

remains to be done to decide if it is worth waiting for an answer (since backtracking techniques
easily produce algorithms which may take eons to finish).

All of YAGS’s backtracking operations report progress info at InfoLevel 3 to
YAGS’s info class YAGSInfo.InfoClass (see B.24.3). In short, this means that setting
SetInfoLevel(YAGSInfo.InfoClass,3); will cause all backtracking operations to re-
port progress information to the console: The contents of L will be reported each time
it grows in length. Revert to the default behavior by setting the InfoLevel to 0 using
SetInfoLevel(YAGSInfo.InfoClass,0);

Example
gap> SetInfoLevel(YAGSInfo.InfoClass,3);
gap> BacktrackBag([0,1],ReturnTrue,3,[]);
#I []
#I [0]
#I [0, 0]
#I [0, 0, 0]
#I [0, 0, 1]
#I [0, 1]
#I [0, 1, 0]
#I [0, 1, 1]
#I [1]
#I [1, 0]
#I [1, 0, 0]
#I [1, 0, 1]
#I [1, 1]
#I [1, 1, 0]
#I [1, 1, 1]
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0],
[1, 0, 1], [1, 1, 0], [1, 1, 1]]
gap> SetInfoLevel(YAGSInfo.InfoClass,0);
gap> BacktrackBag([0,1],ReturnTrue,3,[]);
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0],

[1, 0, 1], [1, 1, 0], [1, 1, 1]]

The output of the progress info may be redirected to a file or character device by setting the
variable YAGSInfo.InfoOutput (B.24.4) accordingly.

The information in this section about progress reporting applies to all YAGS functions that
internally use Backtrack (B.2.1) or BacktrackBag (B.2.2), namely CompletesOfGivenOrder
(B.3.14), Orientations (B.15.4) and all morphism-related operations in Chapter 5.

Appendix A

YAGS Functions by Topic

A complete list of all YAGS’s functions organized by topic.

A.1 Most Common Functions

• AddEdges(G, E)
Returns a new graph obtained from G by adding the list of edges in E . (B.1.1)

• Adjacency(G, x)
Returns the list of vertices in G which are adjacent to vertex x . (B.1.4)

• AutomorphismGroup(G)
Returns the automorphism group of graph G . A synonym is AutGroupGraph(G).
(B.1.8)

• BoxProduct(G, H);
Returns the box product (or Cartesian product) G�H of graphs G and H . (B.2.5)

• BoxTimesProduct(G, H)
Returns the boxtimes product (or strong product) G�H of graphs G and H . (B.2.6)

• Circulant(n, Jumps)
Returns the minimal graph invariant under the cyclic permutation (1 2 · · · n) such that
the vertex 1 is adjacent to the vertices in Jumps . (B.3.3)

• CliqueGraph(G)
CliqueGraph(G, maxNumCli)
Returns the intersection graph of the (maximal) cliques of G ; aborts if maxNumCli cliques
are found. (B.3.5)

• Cliques(G)
Cliques(G, maxNumCli)
Returns the list of (maximal) cliques of G ; aborts if maxNumCli cliques are found. (B.3.7)

48

YAGS 49

• ComplementGraph(G)
Returns a new graph H such that V (H) =V (G) and xy ∈ E(H) ⇐⇒ xy 6∈ E(G). (B.3.9)

• CompleteGraph(n)
Returns the graph on n vertices having all possible edges present. (B.3.11)

• CompleteMultipartiteGraph(n1, n2 [, n3 ...])
Returns the graph with r ≥ 2 parts of orders n1 , n2 , ... such that each vertex is adjacent
exactly to all the vertices in the other parts not containing itself. (B.3.13)

• ConnectedComponents(G)
Returns the equivalence partition of V (G) corresponding to the equivalence relation
“reachable” in G . (B.3.17)

• CycleGraph(n)
Returns the cyclic graph on n vertices. (B.3.23)

• Diameter(G)
Returns the maximum among the distances between pairs of vertices of G . (B.4.3)

• DiscreteGraph(n)
Returns the graph on n vertices with no edges. (B.4.5)

• DisjointUnion(G, H)
Returns the disjoint union of two graphs G and H . (B.4.6)

• Distance(G, x, y)
Returns the minimum length of a path connecting x to y in G . (B.4.7)

• Draw(G)
Draw(G, Highlighted)
Draws the graph G on a new window with some Highlighted vertices. (B.4.15)

• Edges(G)
Returns the list of edges of graph G . (B.5.3)

• GraphAttributeStatistics(OrderList, ProbList, Attribute)
Returns statistics for graph attribute Attribute . (B.7.4)

• GraphByAdjacencies(AdjList)
Returns a new graph having AdjList as its list of adjacencies. (B.7.6)

• GraphByAdjMatrix(Mat)
Returns a new graph created from an adjacency matrix Mat . (B.7.7)

• GraphByCompleteCover(Cover)
Returns the minimal graph where the elements of Cover are (the vertex sets of) complete
subgraphs. (B.7.8)

YAGS 50

• GraphByEdges(L)
Returns the minimal graph such that the pairs in L are edges. (B.7.9)

• GraphByRelation(V, Rel)
GraphByRelation(n, Rel)
Returns a new graph G where xy ∈ E(G) iff Rel(x,y) =true. (B.7.10)

• GraphByWalks(Walk1, Walk2,...)
Returns the minimal graph such that Walk1 , Walk2 , etc are walks. (B.7.11)

• GraphSum(G, L)
Returns the lexicographic sum of a list of graphs L over a graph G . (B.7.15)

• InducedSubgraph(G, V)
Returns the subgraph G induced by the vertex set V . (B.9.4)

• InNeigh(G, x)
Returns the list of in-neighbors of x in G . (B.9.5)

• IntersectionGraph(L)
Returns the graph G where V (G) = L and XY ∈ E(G) ⇐⇒ X ∩Y 6=∅. (B.9.7)

• IsEdge(G, x, y)
IsEdge(G, [x,y])
Returns true if [x,y] is an edge of G . (B.9.15)

• IsIsomorphicGraph(G, H)
Returns true when G is isomorphic to H and false otherwise. (B.9.16)

• Join(G, H)
Returns the disjoint union of G and H with all the possible edges between G and H added.
(B.10.2)

• LineGraph(G)
Returns the intersection graph of the edges of G . (B.12.1)

• Link(G, x)
Returns the subgraph induced in G by the neighbors of x . (B.12.2)

• MaxDegree(G)
Returns the maximum degree in graph G . (B.13.1)

• MinDegree(G)
Returns the minimum degree in graph G . (B.13.2)

• Order(G)
Returns the number of vertices, of graph G . (B.15.3)

YAGS 51

• PathGraph(n)
Returns the path graph on n vertices. (B.16.5)

• QuotientGraph(G, Part)
QuotientGraph(G, L1, L2)
Returns the quotient graph of graph G given a vertex partition Part , by identifying any
two vertices in the same part. (B.17.3)

• RandomGraph(n, p)
RandomGraph(n)
Returns a random graph of order n with edge probability p (a rational in [0,1]). (B.18.3)

• RemoveEdges(G, E)
Returns a new graph created from graph G by removing the edges in list E . (B.18.7)

• SetDefaultGraphCategory(Catgy)
Sets the default graph category to Catgy . (B.19.2)

• Size(G)
Returns the number of edges of graph G . (B.19.4)

• TimesProduct(G, H)
Returns the times product (or tensor product) G×H of two graphs G and H . (B.20.4)

• TrivialGraph
The one vertex graph. (B.20.7)

• VertexDegree(G, x)
Returns the degree of vertex x in graph G . (B.22.1)

• VertexNames(G)
Returns the list of names of the vertices of G . (B.22.3)

• WheelGraph(n)
WheelGraph(n, r)
This is the cone of an n -cycle; when present, r is the radius of the wheel. (B.23.1)

A.2 Drawing

• Coordinates(G)
Returns the list of coordinates of the vertices of G if they exist; fail otherwise. (B.3.19)

• Draw(G)
Draw(G, Highlighted)
Draws the graph G on a new window with some Highlighted vertices. (B.4.15)

YAGS 52

• GraphToRaw(FileName, G)
GraphToRaw(FileName, G, Highlighted)
Writes the graph G in raw format to the file FileName . (B.7.16)

• GraphUpdateFromRaw(FileName, G)
Updates the coordinates of G from a file FileName in raw format. (B.7.17)

• SetCoordinates(G, Coord)
Sets the coordinates of the vertices of G , which are used to draw G by Draw(G).
(B.19.1)

A.3 Constructing Graphs

• AddEdges(G, E)
Returns a new graph obtained from G by adding the list of edges in E . (B.1.1)

• AddVerticesByAdjacencies(G, NewAdjList)
Returns a new graph obtained from G by adding some vertices with adjacencies described
by NewAdjList . (B.1.2)

• Graph(Rec)
Returns a new graph created from the information in record Rec . (B.7.3)

• GraphByAdjacencies(AdjList)
Returns a new graph having AdjList as its list of adjacencies. (B.7.6)

• GraphByAdjMatrix(Mat)
Returns a new graph created from an adjacency matrix Mat . (B.7.7)

• GraphByCompleteCover(Cover)
Returns the minimal graph where the elements of Cover are (the vertex sets of) complete
subgraphs. (B.7.8)

• GraphByEdges(L)
Returns the minimal graph such that the pairs in L are edges. (B.7.9)

• GraphByRelation(V, Rel)
GraphByRelation(n, Rel)
Returns a new graph G where xy ∈ E(G) iff Rel(x,y) =true. (B.7.10)

• GraphByWalks(Walk1, Walk2,...)
Returns the minimal graph such that Walk1 , Walk2 , etc are walks. (B.7.11)

• InducedSubgraph(G, V)
Returns the subgraph of G induced by the vertex set V . (B.9.4)

• IntersectionGraph(L)
Returns the graph G where V (G) = L and XY ∈ E(G) ⇐⇒ X ∩Y 6=∅. (B.9.7)

YAGS 53

• RandomGraph(n, p)
RandomGraph(n)
Returns a random graph of order n with edge probability p (a rational in [0,1]). (B.18.3)

• RemoveEdges(G, E)
Returns a new graph created from graph G by removing the edges in list E . (B.18.7)

• RemoveVertices(G, V)
Returns a new graph created from graph G by removing the vertices in list V . (B.18.8)

A.4 Families of Graphs

• AGraph
A 4-cycle with two pendant vertices on consecutive vertices of the cycle. (B.1.6)

• AntennaGraph
A HouseGraph with a pendant vertex (antenna) on the roof. (B.1.7)

• BullGraph
A triangle with two pendant vertices (horns). (B.2.7)

• ChairGraph
A tree with degree sequence 3,2,1,1,1. (B.3.2)

• Circulant(n, Jumps)
Returns the minimal graph invariant under the cyclic permutation (1 2 · · · n) such that
the vertex 1 is adjacent to the vertices in Jumps . (B.3.3)

• ClawGraph
The graph on 4 vertices, 3 edges, and maximum degree 3. (B.3.4)

• ClockworkGraph(NNFSList)
ClockworkGraph(NNFSList, rank)
ClockworkGraph(NNFSList, Perm)
ClockworkGraph(NNFSList, rank, Perm)
Returns the clockwork graph specified by its parameters. (B.3.8)

• CompleteBipartiteGraph(n, m)
Returns the minimal graph such that all the vertices in {1,2, . . . ,n} are adjacent to all the
vertices in {n+1,n+2, . . . ,n+m}. (B.3.10)

• CompleteGraph(n)
Returns the graph on n vertices having all possible edges present. (B.3.11)

• CompleteMultipartiteGraph(n1, n2 [, n3 ...])
Returns the graph with r ≥ 2 parts of orders n1 , n2 , ... such that each vertex is adjacent
exactly to all the vertices in the other parts not containing itself. (B.3.13)

YAGS 54

• Cube
The 1-skeleton of Plato’s cube. (B.3.21)

• CubeGraph(n)
Returns the underlying graph of the n -hypercube. (B.3.22)

• CycleGraph(n)
Returns the cyclic graph on n vertices. (B.3.23)

• CylinderGraph(b, h)
Returns a graph on b(h+1) vertices which is a {4,6}-regular triangulation of the cylinder.
(B.3.24)

• DartGraph
A diamond with a pendant vertex and maximum degree 4. (B.4.1)

• DiamondGraph
The graph on 4 vertices and 5 edges. (B.4.4)

• DiscreteGraph(n)
Returns the graph on n vertices with no edges. (B.4.5)

• Dodecahedron
The 1-skeleton of Plato’s Dodecahedron. (B.4.12)

• DominoGraph
Two squares glued by an edge. (B.4.14)

• FanGraph(n)
Returns the n -Fan: The join of a vertex and a (n+1)-path. (B.6.1)

• FishGraph
A square and a triangle glued by a vertex. (B.6.2)

• GemGraph
The 3-Fan graph. (B.7.1)

• HouseGraph
A 4-Cycle and a triangle glued by an edge. (B.8.2)

• Icosahedron
The 1-skeleton of Plato’s icosahedron. (B.9.1)

• JohnsonGraph(n, r)
Returns a new graph G where V (G) is the set of r -subsets of {1,2, . . . ,n}, two of them
being adjacent iff their intersection contains exactly r -1 elements. (B.10.1)

• KiteGraph
A diamond with a pendant vertex and maximum degree 3. (B.11.1)

YAGS 55

• OctahedralGraph(n)
Returns the (2n −2)-regular graph on 2n vertices. (B.15.1)

• Octahedron
The 1-skeleton of Plato’s octahedron. (B.15.2)

• ParachuteGraph
Returns the suspension of a 4-path with a pendant vertex attached to the south pole.
(B.16.2)

• ParapluieGraph
A 3-Fan graph with a 3-path attached to the universal vertex. (B.16.3)

• PathGraph(n)
Returns the path graph on n vertices. (B.16.5)

• PawGraph
A triangle with a pendant vertex. (B.16.6)

• PetersenGraph
The 3-regular graph on 10 vertices having girth 5. (B.16.7)

• RandomCirculant(n)
RandomCirculant(n, k)
RandomCirculant(n, p)
Returns a circulant on n vertices with its jumps selected randomly. (B.18.2)

• RGraph
A square with two pendant vertices attached to the same vertex of the square. (B.18.9)

• SnubDisphenoid
The 1-skeleton of the 84th Johnson solid. (B.19.5)

• SpikyGraph(n)
Returns a complete on n vertices, with an additional complete on n vertices glued to each
of its (n -1)-dimensional faces. (B.19.8)

• SunGraph(n)
Returns a complete graph on n vertices with a zigzagging corona of 2n vertices glued to
a n -cycle of the complete graph. (B.19.9)

• Tetrahedron
The 1-skeleton of Plato’s tetrahedron. (B.20.2)

• TorusGraph(n, m)
Returns (the underlying graph of) a triangulation of the torus on nm vertices. (B.20.5)

YAGS 56

• TreeGraph(arity, depth)
TreeGraph(ArityList)
Returns the tree, the connected cycle-free graph, specified by it parameters. (B.20.6)

• TrivialGraph
The one vertex graph. (B.20.7)

• WheelGraph(n)
WheelGraph(n, r)
This is the cone of an n -cycle; when present r is the radius of the wheel. (B.23.1)

A.5 Small Graphs

• ConnectedGraphsOfGivenOrder(n)
Returns the list of all connected graphs of order n (up to isomorphism). (B.3.18)

• Graph6ToGraph(String)
Returns the graph represented by String which is encoded using Brendan McKay’s
graph6 format. (B.7.5)

• GraphsOfGivenOrder(n)
Returns the list of all graphs of order n (up to isomorphism). (B.7.14)

• HararyToMcKay(Spec)
Returns the McKay’s index of a Harary’s graph specification Spec . (B.8.1)

• ImportGraph6(Filename)
Returns the list of graphs represented in Filename which are encoded using Brendan
McKay’s graph6 format. (B.9.2)

• McKayToHarary(index)
Returns the Harary’s graph specification of a McKay’s index . (B.8.1)

A.6 Attributes and Parameters

• Adjacencies(G)
Returns the list of adjacencies of G : The neighbors of vertex x are listed in position x of
that list. (B.1.3)

• Adjacency(G, x)
Returns the list of vertices in G which are adjacent to vertex x . (B.1.4)

• AdjMatrix(G)
Returns the adjacency matrix of G . (B.1.5)

YAGS 57

• AutomorphismGroup(G)
Returns the automorphism group of graph G . A synonym is AutGroupGraph(G).
(B.1.8)

• BoundaryVertices(G)
Returns the list of vertices of G that have links isomorphic to a path. But it returns fail
if G is not (the underlying graph of a triangulation of) a compact surface. (B.2.4)

• ConnectedComponents(G)
Returns the equivalence partition of V (G) corresponding to the equivalence relation
“reachable” in G . (B.3.17)

• Diameter(G)
Returns the maximum among the distances between pairs of vertices of G . (B.4.3)

• Distance(G, x, y)
Returns the minimum length of a path connecting x to y in G . (B.4.7)

• DistanceMatrix(G)
Returns an n×n matrix D, where D[x][y] is the distance between x and y in G . (B.4.10)

• Distances(G, A, B)
Returns the list of distances between pairs of vertices in A×B. (B.4.8)

• DistanceSet(G, A, B)
Returns the set of distances between pairs of vertices in A×B. (B.4.11)

• DominatedVertices(G)
Returns the set of dominated vertices of G . (B.4.13)

• Eccentricity(G, x)
Returns the distance from a vertex x in graph G to its most distant vertex in G . (B.5.2)

• Edges(G)
Returns the list of edges of graph G . (B.5.3)

• Girth(G)
Returns the length of a minimum induced cycle in G . (B.7.2)

• GraphAttributeStatistics(OrderList, ProbList, Attribute)
Returns statistics for graph attribute Attribute . (B.7.4)

• InteriorVertices(G)
Returns the list of vertices of G that have links isomorphic to a cycle. But it returns fail
if G is not a compact surface. (B.9.6)

• IsCompactSurface(G)
Returns true if every link of G is either an n -cycle, for n ≥ 4 or an m -path, for m ≥ 2; it
returns false otherwise. (B.9.11)

YAGS 58

• IsDiamondFree(G)
Returns true if G is free from induced diamonds, false otherwise. (B.9.14)

• IsEdge(G, x, y)
IsEdge(G, [x,y])
Returns true if [x,y] is an edge of G . (B.9.15)

• IsLocallyConstant(G)
Returns true if all the links of G are isomorphic to each other; false otherwise (B.9.17)

• IsLocallyH(G, H)
Returns true if all the links of G are isomorphic to H ; false otherwise. (B.9.18)

• IsLoopless(G)
Returns true when G does not have loops: edges of the form [x,x]. (B.9.19)

• IsOriented(G)
Returns true if whenever [x,y] is an edge (arrow) of G , [y,x] is not. (B.9.22)

• IsSimple(G)
Returns true if G contains no loops and no arrows. (B.9.23)

• IsSurface(G)
Returns true if every link of G is an n-cycle, for n≥ 4; false otherwise. (B.9.24)

• IsUndirected(G)
Returns true if, whenever [x,y] is an edge (arrow) of G , [y,x] is also an edge of G .
(B.9.27)

• Link(G, x)
Returns the subgraph induced in G by the neighbors of x . (B.12.2)

• Links(G)
Returns the list of subgraphs of G induced by the neighbors of each vertex of G . (B.12.3)

• MaxDegree(G)
Returns the maximum degree in graph G . (B.13.1)

• MinDegree(G)
Returns the minimum degree in graph G . (B.13.2)

• NumberOfConnectedComponents(G)
Returns the number of connected components of G . (B.14.4)

• Order(G)
Returns the number of vertices, of graph G . (B.15.3)

• Radius(G)
Returns the minimal eccentricity among the vertices of graph G . (B.18.1)

YAGS 59

• Size(G)
Returns the number of edges of graph G . (B.19.4)

• SpanningForest(G)
Returns a spanning forest of G . (B.19.6)

• SpanningForestEdges(G)
Returns the edges of a spanning forest of G . (B.19.7)

• VertexDegree(G, x)
Returns the degree of vertex x in graph G . (B.22.1)

• VertexDegrees(G)
Returns the list of degrees of the vertices in graph G . (B.22.2)

• VertexNames(G)
Returns the list of names of the vertices of G . (B.22.3)

• Vertices(G)
Returns the list [1..Order(G)]. (B.22.4)

A.7 Unary Operators

• CliqueGraph(G)
CliqueGraph(G, maxNumCli)
Returns the intersection graph of the (maximal) cliques of G ; aborts if maxNumCli cliques
are found. (B.3.5)

• ComplementGraph(G)
Returns a new graph H such that V (H) =V (G) and xy ∈ E(H) ⇐⇒ xy 6∈ E(G). (B.3.9)

• CompletelyParedGraph(G)
Returns the graph obtained from G by iteratively removing all dominated vertices.
(B.3.12)

• Cone(G)
Returns a new graph obtained from G by adding a new vertex which is adjacent to all
vertices of G . (B.3.16)

• DistanceGraph(G, Dist)
Returns a new graph with the same vertices as G , where two vertices are adjacent iff the
distance between them in G belongs to Dist . (B.4.9)

• InducedSubgraph(G, V)
Returns the subgraph of graph G induced by the vertex set V . (B.9.4)

• LineGraph(G)
Returns the intersection graph of the edges of G . (B.12.1)

YAGS 60

• ParedGraph(G)
Returns the induced subgraph obtained from G by removing its dominated vertices.
(B.16.4)

• PowerGraph(G, exp)
Returns a new graph where two vertices are neighbors iff their distance in G is less than
or equal to exp . (B.16.8)

• QuotientGraph(G, Part)
QuotientGraph(G, L1, L2)
Returns the quotient graph of graph G given a vertex partition Part , by identifying any
two vertices in the same part. (B.17.3)

• Suspension(G)
Returns the graph obtained from G by adding two new vertices which are adjacent to every
vertex of G but not to each other. (B.19.10)

A.8 Binary Operators

• BoxProduct(G, H);
Returns the box product (or Cartesian product) G�H of graphs G and H . (B.2.5)

• BoxTimesProduct(G, H)
Returns the boxtimes product (or strong product) G�H of graphs G and H . (B.2.6)

• Composition(G, H)
Returns the composition G[H] of two graphs G and H . (B.3.15)

• DisjointUnion(G, H)
Returns the disjoint union of two graphs G and H . (B.4.6)

• GraphSum(G, L)
Returns the lexicographic sum of a list of graphs L over a graph G . (B.7.15)

• Join(G, H)
Returns the disjoint union of G and H with all the possible edges between G and H added.
(B.10.2)

• TimesProduct(G, H)
Returns the times product (or tensor product) G×H of two graphs G and H . (B.20.4)

A.9 Cliques

• Basement(G, KnG, x)
Basement(G, KnG, V)
Returns the basement of vertex x (vertex set V) of the iterated clique graph KnG with
respect to G . (B.2.3)

YAGS 61

• CliqueGraph(G)
CliqueGraph(G, maxNumCli)
Returns the intersection graph of the (maximal) cliques of G ; aborts if maxNumCli cliques
are found. (B.3.5)

• CliqueNumber(G)
Returns the order, ω(G), of a maximum clique of G . (B.3.6)

• Cliques(G)
Cliques(G, maxNumCli)
Returns the list of (maximal) cliques of G ; aborts if maxNumCli cliques are found. (B.3.7)

• CompletesOfGivenOrder(G, ord)
Returns the list of vertex sets of all complete subgraphs of order ord of G . (B.3.14)

• IsCliqueGated(G)
Returns true if G is a clique gated graph. (B.9.9)

• IsCliqueHelly(G)
Returns true if the set of (maximal) cliques of G satisfy the Helly property. (B.9.10)

• IsComplete(G, L)
Returns true if L induces a complete subgraph of G . (B.9.12)

• IsCompleteGraph(G)
Returns true if graph G is a complete graph, false otherwise. (B.9.13)

• NumberOfCliques(G)
NumberOfCliques(G, maxNumCli)
Returns the number of (maximal) cliques of G . (B.14.3)

A.10 Morphisms of Graphs

We list here only primitive operations, many derived operations (over forty) for morphisms of
graphs are discussed in Chapter 5.

• IsIsomorphicGraph(G, H)
Returns true when G is isomorphic to H and false otherwise. (B.9.16)

• IsoMorphism(G, H)
Returns one isomorphism from G to H ; fail if there is none. (B.9.20)

• IsoMorphisms(G, H)
Returns the list of all isomorphisms from G to H . (B.9.21)

• NextIsoMorphism(G, H, F)
Returns the next isomorphism (after F) from G to H . (B.14.1)

YAGS 62

• NextPropertyMorphism(G, H, F, PropList)
Returns the next morphism (after F) from G to H satisfying the list of properties
PropList . (B.14.2)

• PropertyMorphism(G, H, PropList)
Returns the first morphism from G to H satisfying the list of properties PropList . (B.16.9)

• PropertyMorphisms(G, H, PropList)
Returns all morphisms from G to H satisfying the list of properties PropList . (B.16.10)

A.11 Graph Categories

• CopyGraph(G)
Returns a fresh copy of G . Useful to change the category of a graph. (B.3.20)

• GraphCategory([G, ...]);
For internal use. Returns the minimal common category to a list of graphs. (B.7.12)

• Graphs()
The category of all graphs that can be represented in YAGS. (B.7.13)

• \in(G, Catgy)
G in Catgy
Returns true if graph G belongs to category Catgy and false otherwise. (B.9.3)

• LooplessGraphs()
The category of all graph that may contain arrows and edges but no loops. (B.12.4)

• OrientedGraphs()
The category of all graphs that may contain arrows but no edges or loops. (B.15.5)

• SetDefaultGraphCategory(Catgy)
Sets the default graph category to Catgy . (B.19.2)

• SimpleGraphs()
The category of all graphs which may contain edges but no arrows or loops. (B.19.3)

• TargetGraphCategory([G, ...]);
For internal use. Within YAGS methods, returns the graph category to which the new
graph will belong. (B.20.1)

• UndirectedGraphs()
The category of all graphs that may contain loops and edges but no arrows. (B.21.3)

YAGS 63

A.12 Digraphs

• InNeigh(G, x)
Returns the list of in-neighbors of x in G . (B.9.5)

• IsTournament(G)
Returns true if G contains no loops or edges but only arrows and it is maximal w.r.t. this
property. (B.9.25)

• IsTransitiveTournament(G)
Returns true if G is a Tournament and whenever xy and yz are arrows, then xz is an arrow
too. (B.9.26)

• Orientations(G)
Returns the list of all the oriented graphs that are obtained from G by replacing each edge
by one arrow. (B.15.4)

• OutNeigh(G, x)
Returns the list of out-neighbors of x in G . (B.15.6)

• PaleyTournament(prime)
Returns the Paley tournament associated with prime number prime . (B.16.1)

A.13 Groups and Rings

• CayleyGraph(Grp)
CayleyGraph(Grp, Elms)
Returns the CayleyGraph of group Grp . (B.3.1)

• Circulant(n, Jumps)
Returns the minimal graph invariant under the cyclic permutation (1 2 · · · n) such that
the vertex 1 is adjacent to the vertices in Jumps . (B.3.3)

• GroupGraph(G, Grp)
GroupGraph(G, Grp, Act)
Returns the minimal Grp -invariant (under the action Act) graph containing G . (B.7.18)

• QuadraticRingGraph(Rng)
Returns a graph G whose vertices are the elements of the ring Rng and xy ∈ E(G) ⇐⇒
x+ z2 = y for some z in Rng . (B.17.2)

• RingGraph(Rng, Elms)
Returns the graph G whose vertices are the elements of the ring Rng such that x is adjacent
to y iff x+ r = y for some r in Elms . (B.18.10)

• UnitsRingGraph(Rng)
Returns the graph G whose vertices are the elements of Rng such that x is adjacent to y iff
x+ z = y for some unit z of Rng . (B.21.4)

YAGS 64

A.14 Backtracking

• Backtrack(L, Opts, Chk, Done, Extra)
Returns the next solution (after L) to a backtracking combinatorial problem specified by
its parameters. (B.2.1)

• BacktrackBag(Opts, Chk, Done, Extra)
Returns the list of all solutions to a backtracking combinatorial problem specified by its
parameters. (B.2.2)

A.15 Miscellaneous

• DumpObject(Obj)
For internal use. Dumps all information available for object Obj . (B.4.16)

• EasyExec(Dir, ProgName, InString)
EasyExec(ProgName, InString)
Calls the external program ProgName with input string InString ; returns the output
string. (B.5.1)

• EquivalenceRepresentatives(L, Eqiv)
Returns a sublist of L , which is a complete list of representatives of L under the equivalent
relation Equiv . (B.5.4)

• IsBoolean(Obj)
Returns true if object Obj is true or false and false otherwise. (B.9.8)

• QtfyIsSimple(G)
For internal use. Returns how far is graph G from being simple. (B.17.1)

• RandomlyPermuted(Obj)
Returns a copy of Obj with the order of its elements permuted randomly. (B.18.6)

• RandomPermutation(n)
Returns a random permutation of the list [1,2, ..., n]. (B.18.4)

• RandomSubset(Set)
RandomSubset(Set, k)
RandomSubset(Set, p)
Returns a random subset of the set Set . It also works for lists though. (B.18.5)

• TimeInSeconds()
Returns the time in seconds since 1970-01-01 00:00:00 UTC as an integer. (B.20.3)

• UFFind(UFS, x)
For internal use. Implements the find operation on the union-find structure .
(B.21.1)

YAGS 65

• UFUnite(UFS, x, y)
For internal use. Implements the unite operation on the union-find structure .
(B.21.2)

• YAGSExec(ProgName, InString)
For internal use. Calls external program ProgName located in directory YAGS-DIR/bin/
feeding it with InString as input and returning the output of the external program as a
string. (B.24.1)

• YAGSInfo
Global record where much YAGS-related information is stored. (B.24.2)

• YAGSInfo.InfoClass
YAGS’s progress reporting InfoClass. Several algorithms in YAGS report progress at
InfoLevel 1 or 3. (B.24.3)

• YAGSInfo.InfoOutput
Output file (or device) for YAGS’s progress reporting InfoClass. (B.24.4)

A.16 Deprecated

We declare in this section the operations that, with higher probability, may disappear or change
in a non-compatible manner in the future.

• AutGroupGraph(G)
Returns the automorphism group of graph G . Use AutomorphismGroup(G) instead.
(B.1.8)

• DeclareQtfyProperty(Name, Filter)
For internal use. Declare a quantifiable property. (B.4.2)

• DumpObject(Obj)
For internal use. Dumps all information available for object Obj . (B.4.16)

• EasyExec(Dir, ProgName, InString)
EasyExec(ProgName, InString)
Calls the external program ProgName with input string InString ; returns the output
string. (B.5.1)

• GraphToRaw(FileName, G)
GraphToRaw(FileName, G, Highlighted)
Writes the graph G in raw format to the file FileName . (B.7.16)

• GraphUpdateFromRaw(FileName, G)
Updates the coordinates of G from a file FileName in raw format. (B.7.17)

YAGS 66

• GroupGraph(G, Grp)
GroupGraph(G, Grp, Act)
Returns the minimal Grp -invariant (under the action Act) graph containing G . (B.7.18)

• QtfyIsSimple(G)
For internal use. Returns how far is graph G from being simple. (B.17.1)

• TimeInSeconds()
Returns the time in seconds since 1970-01-01 00:00:00 UTC as an integer. (B.20.3)

• YAGSExec(ProgName, InString)
For internal use. Calls external program ProgName located in directory YAGS-DIR/bin/
feeding it with InString as input and returning the output of the external program as a
string. (B.24.1)

• YAGSInfo
Global record where much YAGS-related information is stored. (B.24.2)

• YAGSPositionsTrueBlist(Blist)
For internal use. The same as ListBlist([1..Length(Blist)],Blist); (B.24.5)

Appendix B

YAGS Functions Reference

This chapter contains a list of most YAGS’s functions, with full definitions, in alphabetical order;
but the predefined types of morphisms are best described in their own Section 5.2.

B.1 A

B.1.1 AddEdges

. AddEdges(G, E) (operation)

Returns a new graph created from graph G by adding the edges in list E .
Example

gap> g:=CycleGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])
gap> AddEdges(g,[[1,3]]);
Graph(Category := SimpleGraphs, Order := 4, Size :=
5, Adjacencies := [[2, 3, 4], [1, 3], [1, 2, 4], [1, 3]])
gap> AddEdges(g,[[1,3],[2,4]]);
Graph(Category := SimpleGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])

B.1.2 AddVerticesByAdjacencies

. AddVerticesByAdjacencies(G, NewAdjList) (operation)

Returns a new graph created from graph G by adding as many new vertices as
Length(NewAdjList). Each entry in NewAdjList is also a list: the list of neighbors of the
corresponding new vertex.

Example
gap> g:=PathGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=

67

YAGS 68

4, Adjacencies := [[2], [1, 3], [2, 4], [3, 5], [4]])
gap> AddVerticesByAdjacencies(g,[[1,2],[4,5]]);
Graph(Category := SimpleGraphs, Order := 7, Size :=
8, Adjacencies := [[2, 6], [1, 3, 6], [2, 4], [3, 5, 7],

[4, 7], [1, 2], [4, 5]])
gap> AddVerticesByAdjacencies(g,[[1,2,7],[4,5]]);
Graph(Category := SimpleGraphs, Order := 7, Size :=
9, Adjacencies := [[2, 6], [1, 3, 6], [2, 4], [3, 5, 7],

[4, 7], [1, 2, 7], [4, 5, 6]])

B.1.3 Adjacencies

. Adjacencies(G) (operation)

Returns the adjacency lists of graph G .
Example

gap> g:=PathGraph(3);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
gap> Adjacencies(g);
[[2], [1, 3], [2]]

B.1.4 Adjacency

. Adjacency(G, x) (operation)

Returns the adjacency list of vertex x in G .
Example

gap> g:=PathGraph(3);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
gap> Adjacency(g,1);
[2]
gap> Adjacency(g,2);
[1, 3]

B.1.5 AdjMatrix

. AdjMatrix(G) (attribute)

Returns the adjacency matrix of the graph G .
Example

gap> AdjMatrix(CycleGraph(4));
[[false, true, false, true], [true, false, true, false],

[false, true, false, true], [true, false, true, false]]

YAGS 69

B.1.6 AGraph

. AGraph (global variable)

A 4-cycle with two pendant vertices on consecutive vertices of the cycle.
Example

gap> AGraph;
Graph(Category := SimpleGraphs, Order := 6, Size :=
6, Adjacencies := [[2], [1, 3, 5], [2, 4], [3, 5],

[2, 4, 6], [5]])

B.1.7 AntennaGraph

. AntennaGraph (global variable)

A HouseGraph with a pendant vertex (antenna) on the roof.
Example

gap> AntennaGraph;
Graph(Category := SimpleGraphs, Order := 6, Size :=
7, Adjacencies := [[2, 4, 5], [1, 3], [2, 4], [1, 3, 5],

[1, 4, 6], [5]])

B.1.8 AutomorphismGroup

. AutomorphismGroup(G) (attribute)

. AutGroupGraph(G) (operation)

Returns the group of automorphisms of the graph G . Both forms are synonyms.
Example

gap> AutomorphismGroup(Icosahedron);
Group([(1,3,10,12,8,5)(2,11,9,7,6,4), (1,4,7,8,6)(2,3,11,12,9)])
gap> AutGroupGraph(Icosahedron);
Group([(1,3,10,12,8,5)(2,11,9,7,6,4), (1,4,7,8,6)(2,3,11,12,9)])

B.2 B

B.2.1 Backtrack

. Backtrack(L, Opts, Chk, Done, Extra) (operation)

Generic, user-customizable backtracking algorithm.
The non-expert programmer is advised to read Chapter 6 first.
A backtracking algorithm explores a decision tree in search for solutions to a combinatorial

problem. The combinatorial problem and the search strategy are specified by the parameters:

YAGS 70

L is just a list that Backtrack uses to keep track of solutions and partial solutions. It is
usually set to the empty list as a starting point. After a solution is found, it is returned and
stored in L . This value of L is then used as a starting point to search for the next solution in
case Backtrack is called again. Partial solutions are also stored in L during the execution of
Backtrack.

Extra may be any object, list, record, etc. Backtrack only uses it to pass this data to the
user-defined functions Opts , Chk and Done , therefore offering you a way to share data between
your functions.

Opts:=function(L,extra) must return the list of continuation options (children) one has
after some partial solution (node) L has been reached within the decision tree (Opts may use
the extra data Extra as needed). Each of the values in the list returned by Opts(L,extra) will
be tried as possible continuations of the partial solution L . If Opts(L,extra) always returns
the same list, you can put that list in place of the parameter Opts .

Chk:=function(L,extra) must evaluate the partial solution L possibly using the extra
data Extra and must return false when it knows that L can not be extended to a solution of
the problem. Otherwise it returns true. Chk may assume that L{[1..Length(L)-1]} already
passed the test.

Done:=function(L,extra) returns true if L is already a complete solution and false
otherwise. In many combinatorial problems, any partial solution of certain length n is also a
solution (and vice versa), so if this is your case, you can put that length in place of the parameter
Done .

The following example uses Backtrack in its simplest form to compute derangements (per-
mutations of a set, where none of the elements appears in its original position).

Example
gap> N:=4;;L:=[];;extra:=[];;opts:=[1..N];;done:=N;;
gap> chk:=function(L,extra) local i; i:=Length(L);
> return not L[i] in L{[1..i-1]} and L[i]<> i; end;;
gap> Backtrack(L,opts,chk,done,extra);
[2, 1, 4, 3]
gap> Backtrack(L,opts,chk,done,extra);
[2, 3, 4, 1]
gap> Backtrack(L,opts,chk,done,extra);
[2, 4, 1, 3]
gap> Backtrack(L,opts,chk,done,extra);
[3, 1, 4, 2]
gap> Backtrack(L,opts,chk,done,extra);
[3, 4, 1, 2]
gap> Backtrack(L,opts,chk,done,extra);
[3, 4, 2, 1]
gap> Backtrack(L,opts,chk,done,extra);
[4, 1, 2, 3]
gap> Backtrack(L,opts,chk,done,extra);
[4, 3, 1, 2]
gap> Backtrack(L,opts,chk,done,extra);
[4, 3, 2, 1]
gap> Backtrack(L,opts,chk,done,extra);

YAGS 71

fail

This operation reports progress at InfoLevel 3 (see B.24.3 and Section 6.4).
Extensive information on Backtrack and BacktrackBag can be found in Chapter 6.

B.2.2 BacktrackBag

. BacktrackBag(Opts, Chk, Done, Extra) (operation)

Returns the list of all solutions that would be returned one at a time by Backtrack.
The following example computes all derangements of order 4.

Example
gap> N:=4;;
gap> chk:=function(L,extra) local i; i:=Length(L);
> return not L[i] in L{[1..i-1]} and L[i]<> i; end;;
gap> BacktrackBag([1..N],chk,N,[]);
[[2, 1, 4, 3], [2, 3, 4, 1], [2, 4, 1, 3], [3, 1, 4, 2],

[3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 3, 1, 2],
[4, 3, 2, 1]]

This operation reports progress at InfoLevel 3 (see B.24.3 and Section 6.4).
Extensive information on Backtrack and BacktrackBag can be found in Chapter 6.

B.2.3 Basement

. Basement(G, KnG, x) (operation)

. Basement(G, KnG, V) (operation)

Given a graph G , some iterated clique graph KnG of G and a vertex x of KnG , the operation
returns the basement of x with respect to G [23]. Loosely speaking, the basement of x is the
set of vertices of G that constitutes the iterated clique x .

Example
gap> g:=Icosahedron;;Cliques(g);
[[1, 2, 3], [1, 2, 6], [1, 3, 4], [1, 4, 5], [1, 5, 6],

[4, 5, 7], [4, 7, 11], [5, 7, 8], [7, 8, 12],
[7, 11, 12], [5, 6, 8], [6, 8, 9], [8, 9, 12], [2, 6, 9],
[2, 9, 10], [9, 10, 12], [2, 3, 10], [3, 10, 11],
[10, 11, 12], [3, 4, 11]]

gap> kg:=CliqueGraph(g);; k2g:=CliqueGraph(kg);;
gap> Basement(g,k2g,1);Basement(g,k2g,2);
[1, 2, 3, 4, 5, 6]
[1, 2, 3, 4, 6, 10]

Formally, taking m=n-1, the basement is defined as follows:

YAGS 72

Basement(G,G,x):=x;
Basement(G,KG,x):=VertexNames(KG)[x];
Basement(G,KnG,x):= Union(List(VertexNames(KnG)[x]), z->Basement(G,KmG,z));

In its second form, V is a set of vertices of KnG , in that case, the basement is simply the
union of the basements of the vertices in V .

Example
gap> Basement(g,k2g,[1,2]);
[1, 2, 3, 4, 5, 6, 10]

Basements have been used to study distances and diameters of clique graphs in [3] and [23].

B.2.4 BoundaryVertices

. BoundaryVertices(G) (attribute)

When G is (an underlying graph of a Whitney triangulation of) a compact surface, it returns
the list of vertices in the boundary (of the triangulation) of the surface. That is, the list of vertices
of G whose link is isomorphic to a path of length at least 2. It returns fail if G is not a compact
surface.

Example
gap> BoundaryVertices(WheelGraph(4,2));
[6, 7, 8, 9]
gap> BoundaryVertices(Octahedron);
[]

B.2.5 BoxProduct

. BoxProduct(G, H) (operation)

Returns the box product, G�H , of two graphs G and H (also known as the Cartesian product).
The box product is calculated as follows:
For each pair of vertices x ∈ G ,y ∈ H we create a vertex (x,y). Given two such vertices (x,y)

and (x′,y′) they are adjacent iff x = x and y∼ y′ or x∼ x′ and y = y′.
Example

gap> g:=PathGraph(3);h:=CycleGraph(4);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])
gap> gh:=BoxProduct(g,h);
Graph(Category := SimpleGraphs, Order := 12, Size :=
20, Adjacencies := [[2, 4, 5], [1, 3, 6], [2, 4, 7],

[1, 3, 8], [1, 6, 8, 9], [2, 5, 7, 10], [3, 6, 8, 11],
[4, 5, 7, 12], [5, 10, 12], [6, 9, 11], [7, 10, 12],

YAGS 73

[8, 9, 11]])
gap> VertexNames(gh);
[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2],

[2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4]]

B.2.6 BoxTimesProduct

. BoxTimesProduct(G, H) (operation)

Returns the boxtimes product, G � H , of two graphs G and H (also known as the strong
product).

The boxtimes product is calculated as follows:
For each pair of vertices x ∈ G ,y ∈ H we create a vertex (x,y). Given two such vertices (x,y)

and (x′,y′) such that (x,y) 6= (x′,y′) they are adjacent iff x' x′ and y' y′.
Example

gap> g:=PathGraph(3);h:=CycleGraph(4);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])
gap> gh:=BoxTimesProduct(g,h);
Graph(Category := SimpleGraphs, Order := 12, Size :=
36, Adjacencies := [[2, 4, 5, 6, 8], [1, 3, 5, 6, 7],

[2, 4, 6, 7, 8], [1, 3, 5, 7, 8], [1, 2, 4, 6, 8, 9, 10, 12],
[1, 2, 3, 5, 7, 9, 10, 11], [2, 3, 4, 6, 8, 10, 11, 12],
[1, 3, 4, 5, 7, 9, 11, 12], [5, 6, 8, 10, 12],
[5, 6, 7, 9, 11], [6, 7, 8, 10, 12], [5, 7, 8, 9, 11]])

gap> VertexNames(gh);
[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2],

[2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4]]

B.2.7 BullGraph

. BullGraph (global variable)

A triangle with two pendant vertices (horns).
Example

gap> BullGraph;
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2], [1, 3, 4], [2, 4], [2, 3, 5], [4]
])

YAGS 74

B.3 C

B.3.1 CayleyGraph

. CayleyGraph(Grp, Elms) (operation)

. CayleyGraph(Grp) (operation)

Returns the graph G whose vertices are the elements of the group Grp such that x is adjacent
to y iff x ∗ g = y for some g in the list Elms . If Elms is not provided, then the generators of G
are used instead.

Example
gap> grp:=Group((1,2,3),(1,2));
Group([(1,2,3), (1,2)])
gap> CayleyGraph(grp);
Graph(Category := SimpleGraphs, Order := 6, Size :=
9, Adjacencies := [[3, 4, 5], [3, 5, 6], [1, 2, 6],

[1, 5, 6], [1, 2, 4], [2, 3, 4]])
gap> CayleyGraph(grp,[(1,2),(2,3)]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
6, Adjacencies := [[2, 3], [1, 5], [1, 4], [3, 6], [2, 6],

[4, 5]])
gap> VertexNames(last);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

B.3.2 ChairGraph

. ChairGraph (global variable)

The tree with degree sequence 3,2,1,1,1.
Example

gap> ChairGraph;
Graph(Category := SimpleGraphs, Order := 5, Size :=
4, Adjacencies := [[2], [1, 3, 4], [2], [2, 5], [4]])

B.3.3 Circulant

. Circulant(n, Jumps) (operation)

Returns the graph G whose vertices are [1..n] such that x is adjacent to y iff x+z=y mod n
for some z in the list Jumps .

Example
gap> Circulant(6,[1,2]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[2, 3, 5, 6], [1, 3, 4, 6], [1, 2, 4, 5],

[2, 3, 5, 6], [1, 3, 4, 6], [1, 2, 4, 5]])

YAGS 75

B.3.4 ClawGraph

. ClawGraph (global variable)

The graph on 4 vertices, 3 edges, and maximum degree 3.
Example

gap> ClawGraph;
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2, 3, 4], [1], [1], [1]])

B.3.5 CliqueGraph

. CliqueGraph(G) (attribute)

. CliqueGraph(G, maxNumCli) (operation)

Returns the intersection graph, K(G), of all the (maximal) cliques of G .
The additional parameter maxNumCli aborts the computation when maxNumCli cliques are

found, even if they are all the cliques of G . If the bound maxNumCli is reached, fail is returned.
However, the clique graph of G is returned if it has been computed earlier, regardless of the value
of maxNumCli .

Example
gap> CliqueGraph(Cube);
Graph(Category := SimpleGraphs, Order := 12, Size :=
24, Adjacencies := [[2, 3, 5, 7], [1, 3, 4, 11], [1, 2, 8, 10],

[2, 5, 6, 11], [1, 4, 6, 7], [4, 5, 9, 12], [1, 5, 8, 9],
[3, 7, 9, 10], [6, 7, 8, 12], [3, 8, 11, 12],
[2, 4, 10, 12], [6, 9, 10, 11]])

gap> CliqueGraph(Octahedron,8);
fail
gap> CliqueGraph(Octahedron,9);
Graph(Category := SimpleGraphs, Order := 8, Size :=
24, Adjacencies := [[2, 3, 4, 5, 6, 7], [1, 3, 4, 5, 6, 8],

[1, 2, 4, 5, 7, 8], [1, 2, 3, 6, 7, 8], [1, 2, 3, 6, 7, 8],
[1, 2, 4, 5, 7, 8], [1, 3, 4, 5, 6, 8], [2, 3, 4, 5, 6, 7]])

gap> CliqueGraph(Octahedron,8);
Graph(Category := SimpleGraphs, Order := 8, Size :=
24, Adjacencies := [[2, 3, 4, 5, 6, 7], [1, 3, 4, 5, 6, 8],

[1, 2, 4, 5, 7, 8], [1, 2, 3, 6, 7, 8], [1, 2, 3, 6, 7, 8],
[1, 2, 4, 5, 7, 8], [1, 3, 4, 5, 6, 8], [2, 3, 4, 5, 6, 7]])

This operation reports progress at InfoLevel 1 (see B.24.3).

B.3.6 CliqueNumber

. CliqueNumber(G) (attribute)

Returns the order, ω(G), of a maximum clique of G .

YAGS 76

Example
gap> g:=SunGraph(4);
Graph(Category := SimpleGraphs, Order := 8, Size :=
14, Adjacencies := [[2, 8], [1, 3, 4, 6, 8], [2, 4],

[2, 3, 5, 6, 8], [4, 6], [2, 4, 5, 7, 8], [6, 8],
[1, 2, 4, 6, 7]])

gap> Cliques(g);
[[2, 4, 6, 8], [2, 3, 4], [1, 2, 8], [4, 5, 6], [6, 7, 8]]
gap> CliqueNumber(g);
4

This operation reports progress at InfoLevel 1 (see B.24.3).

B.3.7 Cliques

. Cliques(G) (attribute)

. Cliques(G, maxNumCli) (operation)

Returns the set of all (maximal) cliques of a graph G . A clique is a maximal complete
subgraph. Here, we use the Bron-Kerbosch algorithm [4].

In the second form, It stops computing cliques after maxNumCli of them have been found.
Example

gap> Cliques(Octahedron);
[[1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5],

[2, 3, 6], [2, 4, 5], [2, 4, 6]]
gap> Cliques(Octahedron,4);
[[1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6]]

This operation reports progress at InfoLevel 1 (see B.24.3).

B.3.8 ClockworkGraph

. ClockworkGraph(NNFSList) (operation)

. ClockworkGraph(NNFSList, rank) (operation)

. ClockworkGraph(NNFSList, Perm) (operation)

. ClockworkGraph(NNFSList, rank, Perm) (operation)

Returns the clockwork graph [14][16] specified by its parameters.
Clockwork graphs have been very useful in constructing examples and counter-examples in

clique graph theory. In particular, they have been used to construct examples of clique-periodic
graphs of all possible periods [6], clique-divergent graphs of linear and polynomial growth rate
[12][14], clique-convergent graphs whose period is not invariant under removal of dominated
vertices [7], clique-convergent graphs which become clique-divergent by just gluing a 4-cycle
to a vertex [8], rank-divergent graphs [17], etc.

YAGS 77

A clockwork graph consists of two parts: the crown and the core, both of them are cyclically
segmented. When not specified, the rank is assumed to be 2 and the return permutation, Perm ,
is assumed to be trivial, let us assume this is our case. Consider the following examples:

Example
gap> ClockworkGraph([[0],[0],[0],[0]]);
Graph(Category := SimpleGraphs, Order := 12, Size :=
28, Adjacencies := [[2, 3, 4, 10, 12], [1, 3, 5, 11, 12],

[1, 2, 4, 5], [1, 3, 5, 6, 7], [2, 3, 4, 6, 8],
[4, 5, 7, 8], [4, 6, 8, 9, 10], [5, 6, 7, 9, 11],
[7, 8, 10, 11], [1, 7, 9, 11, 12], [2, 8, 9, 10, 12],
[1, 2, 10, 11]])

gap> ClockworkGraph([[1],[1],[1],[1]]);
Graph(Category := SimpleGraphs, Order := 12, Size :=
32, Adjacencies := [[2, 3, 4, 10, 12], [1, 3, 5, 11, 12],

[1, 2, 4, 5, 6, 12], [1, 3, 5, 6, 7], [2, 3, 4, 6, 8],
[3, 4, 5, 7, 8, 9], [4, 6, 8, 9, 10], [5, 6, 7, 9, 11],
[6, 7, 8, 10, 11, 12], [1, 7, 9, 11, 12], [2, 8, 9, 10, 12],
[1, 2, 3, 9, 10, 11]])

In both cases, the crown is the subgraph induced by the vertices {1,2,4,5,7,8,10,11} and
the core is induced by {3,6,9,12}. Also in both cases the cyclic segmentations (partitions) of the
crown and the core are {{1,2},{4,5},{7,8},{10,11}} and {{3},{6},{9},{12}} respectively.
The number of segments s is specified by s:=Length(NNFSList) which is 4 in these cases.
The crown is isomorphic to BoxProduct(CycleGraph(s),Completegraph(rank)): All the
crown segments are complete subgraphs and the vertices of cyclically consecutive segments are
joined by a perfect matching. The adjacencies between crown and core vertices are simple to
describe: Cyclically intercalate crown and core segments, making each core vertex adjacent to
the vertices in the previous and the following crown segments. Hence in our examples vertex 3
is adjacent to vertices 1 and 2 (previous segment), but also 4 and 5 (following segment). Note
that since the segmentations and intercalations are cyclic , we have that vertex 12 is adjacent to
10 and 11, but also to 1 and 2. Finally the edges between core vertices are as follows: first each
core segment is a complete subgraph; the vertices within each core segment are linearly ordered
and for vertex number t in segment number s there is a non-negative integer NNFSList[s][t]
which specifies, the Number of Neighbors in the Following core Segment for that ver-
tex (hence the name NNFSList) (Since the vertices in core segments are linearly ordered, it is
enough to specify the number of neighbors in the following segment and the first ones of
those are selected as the neighbors). Hence in our two examples above, each core segment con-
sists of exactly one vertex. In the first example each core segment is adjacent to no vertex in
the following segment (e.g. 3 is not adjacent to 6) but in the second one, each core segment is
adjacent to exactly one vertex in the following segment (e.g. 3 is adjacent to 6).

A more complicated example should be now mostly self-explanatory:
Example

gap> ClockworkGraph([[2],[0,1,3],[0,1,1],[1]]);
Graph(Category := SimpleGraphs, Order := 16, Size :=
59, Adjacencies := [[2, 3, 4, 14, 16], [1, 3, 5, 15, 16],

YAGS 78

[1, 2, 4, 5, 6, 7, 16], [1, 3, 5, 6, 7, 8, 9],
[2, 3, 4, 6, 7, 8, 10], [3, 4, 5, 7, 8, 9, 10],
[3, 4, 5, 6, 8, 9, 10, 11], [4, 5, 6, 7, 9, 10, 11, 12, 13],
[4, 6, 7, 8, 10, 11, 12, 13, 14],
[5, 6, 7, 8, 9, 11, 12, 13, 15], [7, 8, 9, 10, 12, 13, 14, 15],
[8, 9, 10, 11, 13, 14, 15, 16], [8, 9, 10, 11, 12, 14, 15, 16],
[1, 9, 11, 12, 13, 15, 16], [2, 10, 11, 12, 13, 14, 16],
[1, 2, 3, 12, 13, 14, 15]])

The crown and core segmentations are {{1,2},{4,5},{9,10},{14,15}} and
{{3},{6,7,8},{11,12,13},{16}} respectively and the adjacencies specified by the NNFSList
are: 3 is adjacent to 6 and 7; 6 is adjacent to none (in the following core segment); 7 is adjacent
to 11; 8 to 11, 12 and 13; 11 to none; 12 to 16; 13 to 16 and 16 to 3.

When rank and/or Perm are specified, they have the following effects: rank (which must
be at least 2) is the number of vertices in each crown segment, and Perm (which must belong to
SymmetricGroup(rank)) specifies the perfect matching joining the vertices in the last crown
segment with the vertices in the first crown segment: The k -th vertex in the last crown segment
k ∈ {1,2, . . . ,rank} is made adjacent to the Perm(k)-th vertex of the first crown segment.

A number of requisites are put forward in the literature for a graph to be a clockwork graph
but this operation does not enforce those conditions, on the contrary, it tries to make sense of the
data provided as much as possible. For instance NNFSList:=[[2],[2],[2],[2]] would be
inconsistent since there are not enough vertices in each core segment to provide for the required 2
neighbors. However, the result is just the same as with NNFSList:=[[1],[1],[1],[1]]. The
requisites that are mandatory are exactly these: the rank must be at least 2, Perm must belong
to SymmetricGroup(rank), NNFSList must be a list of lists of non-negative integers, and the
number of segments (= Length(NNFSList)) must be at least 3. A call to ClockworkGraph which
fails to conform to these requisites will produce an error.

B.3.9 ComplementGraph

. ComplementGraph(G) (attribute)

Returns the new graph H such that V (H) =V (G) and xy ∈ E(H) ⇐⇒ xy 6∈ E(G).
Example

gap> g:=ClawGraph;
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2, 3, 4], [1], [1], [1]])
gap> ComplementGraph(g);
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[], [3, 4], [2, 4], [2, 3]])

B.3.10 CompleteBipartiteGraph

. CompleteBipartiteGraph(n, m) (function)

YAGS 79

Returns the complete bipartite whose parts have order n and m respectively. This is the joint
(Zykov sum) of two discrete graphs of order n and m .

Example
gap> CompleteBipartiteGraph(2,3);
Graph(Category := SimpleGraphs, Order := 5, Size :=
6, Adjacencies := [[3, 4, 5], [3, 4, 5], [1, 2], [1, 2],

[1, 2]])

B.3.11 CompleteGraph

. CompleteGraph(n) (function)

Returns the complete graph of order n . A complete graph is a graph where all vertices are
connected to each other.

Example
gap> CompleteGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])

B.3.12 CompletelyParedGraph

. CompletelyParedGraph(G) (operation)

Returns the completely pared graph of G , which is obtained by repeatedly applying
ParedGraph until no more dominated vertices remain.

Example
gap> g:=PathGraph(6);
Graph(Category := SimpleGraphs, Order := 6, Size :=
5, Adjacencies := [[2], [1, 3], [2, 4], [3, 5], [4, 6],

[5]])
gap> CompletelyParedGraph(g);
Graph(Category := SimpleGraphs, Order := 1, Size :=
0, Adjacencies := [[]])

This operation reports progress at InfoLevel 1 (see B.24.3).

B.3.13 CompleteMultipartiteGraph

. CompleteMultipartiteGraph(n1, n2[, n3, ...]) (function)

Returns the complete multipartite graph where the orders of the parts are n1 , n2 , ... It is also
the Zykov sum of discrete graphs of order n1 , n2 , ...

YAGS 80

Example
gap> CompleteMultipartiteGraph(2,2,2);
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[3, 4, 5, 6], [3, 4, 5, 6], [1, 2, 5, 6],

[1, 2, 5, 6], [1, 2, 3, 4], [1, 2, 3, 4]])

B.3.14 CompletesOfGivenOrder

. CompletesOfGivenOrder(G, ord) (operation)

Returns the list of vertex sets of all complete subgraphs of order ord of G .
Example

gap> g:=SunGraph(4);
Graph(Category := SimpleGraphs, Order := 8, Size :=
14, Adjacencies := [[2, 8], [1, 3, 4, 6, 8], [2, 4],

[2, 3, 5, 6, 8], [4, 6], [2, 4, 5, 7, 8], [6, 8],
[1, 2, 4, 6, 7]])

gap> CompletesOfGivenOrder(g,3);
[[1, 2, 8], [2, 3, 4], [2, 4, 6], [2, 4, 8], [2, 6, 8],

[4, 5, 6], [4, 6, 8], [6, 7, 8]]
gap> CompletesOfGivenOrder(g,4);
[[2, 4, 6, 8]]

This operation reports progress at InfoLevel 3 (see B.24.3 and Section 6.4).

B.3.15 Composition

. Composition(G, H) (operation)

Returns the composition G [H] of two graphs G and H .
A composition of graphs is obtained by calculating the GraphSum of G with Order(G)

copies of H , G[H] = GraphSum(G, [H, ..., H]).
Example

gap> g:=CycleGraph(4);;h:=DiscreteGraph(2);;
gap> Composition(g,h);
Graph(Category := SimpleGraphs, Order := 8, Size :=
16, Adjacencies := [[3, 4, 7, 8], [3, 4, 7, 8], [1, 2, 5, 6],

[1, 2, 5, 6], [3, 4, 7, 8], [3, 4, 7, 8], [1, 2, 5, 6],
[1, 2, 5, 6]])

B.3.16 Cone

. Cone(G) (operation)

Returns the cone of graph G . The cone of G is the graph obtained from G by adding a new
vertex which is adjacent to every vertex of G . The new vertex is the first one in the new graph.

YAGS 81

Example
gap> Cone(CycleGraph(4));
Graph(Category := SimpleGraphs, Order := 5, Size :=
8, Adjacencies := [[2, 3, 4, 5], [1, 3, 5], [1, 2, 4],

[1, 3, 5], [1, 2, 4]])

B.3.17 ConnectedComponents

. ConnectedComponents(G) (attribute)

Returns the connected components of G .
Two vertices in a graph are reachable (from each other) if there is a path connecting them.

Two vertices are in the same connected component iff they are reachable from each other. This
operation thus computes the equivalence partition of the equivalence relation “reachable”.

Example
gap> g:=GraphByWalks([3,1,4],[5,2]);
Graph(Category := SimpleGraphs, Order := 5, Size :=
3, Adjacencies := [[3, 4], [5], [1], [1], [2]])
gap> ConnectedComponents(g);
[[1, 3, 4], [2, 5]]
gap> g1:=Composition(DiscreteGraph(3),g);
Graph(Category := SimpleGraphs, Order := 15, Size :=
9, Adjacencies := [[3, 4], [5], [1], [1], [2], [8, 9],

[10], [6], [6], [7], [13, 14], [15], [11], [11],
[12]])

gap> ConnectedComponents(g1);
[[1, 3, 4], [2, 5], [6, 8, 9], [7, 10], [11, 13, 14],

[12, 15]]

B.3.18 ConnectedGraphsOfGivenOrder

. ConnectedGraphsOfGivenOrder(n) (operation)

Returns the list of all connected graphs of order n (up to isomorphism). This operation uses
Brendan McKay’s data published here:

https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html.
The data are included with the YAGS distribution in its data directory. Hence this opera-

tion simply reads the corresponding file in that directory using ImportGraph6(Filename).
Therefore, the integer n must be in the range from 1 up to 9.

Example
gap> ConnectedGraphsOfGivenOrder(3);
[Graph(Category := SimpleGraphs, Order := 3, Size :=

2, Adjacencies := [[3], [3], [1, 2]]),
Graph(Category := SimpleGraphs, Order := 3, Size :=

3, Adjacencies := [[2, 3], [1, 3], [1, 2]])]
gap> ConnectedGraphsOfGivenOrder(4);

https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html

YAGS 82

[Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[4], [4], [4], [1, 2, 3]]),

Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[3, 4], [4], [1], [1, 2]]),

Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[3, 4], [4], [1, 4], [1, 2, 3]]),

Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[3, 4], [3, 4], [1, 2], [1, 2]]),

Graph(Category := SimpleGraphs, Order := 4, Size :=
5, Adjacencies := [[3, 4], [3, 4], [1, 2, 4], [1, 2, 3]
]), Graph(Category := SimpleGraphs, Order := 4, Size :=

6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],
[1, 2, 3]])]

gap> Length(ConnectedGraphsOfGivenOrder(9));
261080

Data for graphs on 10 vertices is also available, but not included with YAGS, it may not
be practical to use that data, but if you would like to try, all you have to do is to copy (and to
uncompress) the corresponding file into the directory YAGS-DIR/data/.

Example
gap> ConnectedGraphsOfGivenOrder(10);
#W Unreadable File: /opt/gap4r8/pkg/yags/data/graph10c.g6
fail

B.3.19 Coordinates

. Coordinates(G) (operation)

Gets the coordinates of the vertices of G , which are used to draw G by Draw(G). If the
coordinates have not been previously set, Coordinates returns fail .

Example
gap> g:=CycleGraph(4);;
gap> Coordinates(g);
fail
gap> SetCoordinates(g,[[-10,-10],[-10,20],[20,-10], [20,20]]);
gap> Coordinates(g);
[[-10, -10], [-10, 20], [20, -10], [20, 20]]

B.3.20 CopyGraph

. CopyGraph(G) (operation)

Returns a fresh copy of the graph G . Only the order and adjacency information is copied,
all other known attributes of G are not. Mainly used to transform a graph from one category to
another. The new graph will be forced to comply with the TargetGraphCategory.

YAGS 83

Example
gap> g:=CompleteGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])
gap> g1:=CopyGraph(g:GraphCategory:=OrientedGraphs);
Graph(Category := OrientedGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [3, 4], [4], []])
gap> CopyGraph(g1:GraphCategory:=SimpleGraphs);
Graph(Category := SimpleGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])

B.3.21 Cube

. Cube (global variable)

The 1-skeleton of Plato’s cube.
Example

gap> Cube;
Graph(Category := SimpleGraphs, Order := 8, Size :=
12, Adjacencies := [[2, 3, 5], [1, 4, 6], [1, 4, 7],

[2, 3, 8], [1, 6, 7], [2, 5, 8], [3, 5, 8], [4, 6, 7]])

B.3.22 CubeGraph

. CubeGraph(n) (function)

Returns the hypercube of dimension n . This is the box product (Cartesian product) of n
copies of K2 (an edge).

Example
gap> CubeGraph(3);
Graph(Category := SimpleGraphs, Order := 8, Size :=
12, Adjacencies := [[2, 3, 5], [1, 4, 6], [1, 4, 7],

[2, 3, 8], [1, 6, 7], [2, 5, 8], [3, 5, 8], [4, 6, 7]])

B.3.23 CycleGraph

. CycleGraph(n) (function)

Returns the cyclic graph on n vertices.
Example

gap> CycleGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2, 5], [1, 3], [2, 4], [3, 5], [1, 4]
])

YAGS 84

B.3.24 CylinderGraph

. CylinderGraph(b, h) (function)

Returns a cylinder of base b and height h . The order of this graph is b (h+1) and it is
constructed by taking h+1 copies of the cyclic graph on b vertices, ordering these cycles linearly
and then joining consecutive cycles by a zigzagging (2b)-cycle. This graph is a triangulation of
the cylinder where all internal vertices are of degree 6 and the boundary vertices are of degree
4.

Example
gap> g:=CylinderGraph(4,1);
Graph(Category := SimpleGraphs, Order := 8, Size :=
16, Adjacencies := [[2, 4, 5, 6], [1, 3, 6, 7], [2, 4, 7, 8],

[1, 3, 5, 8], [1, 4, 6, 8], [1, 2, 5, 7], [2, 3, 6, 8],
[3, 4, 5, 7]])

gap> g:=CylinderGraph(4,2);
Graph(Category := SimpleGraphs, Order := 12, Size :=
28, Adjacencies := [[2, 4, 5, 6], [1, 3, 6, 7], [2, 4, 7, 8],

[1, 3, 5, 8], [1, 4, 6, 8, 9, 10], [1, 2, 5, 7, 10, 11],
[2, 3, 6, 8, 11, 12], [3, 4, 5, 7, 9, 12], [5, 8, 10, 12],
[5, 6, 9, 11], [6, 7, 10, 12], [7, 8, 9, 11]])

B.4 D

B.4.1 DartGraph

. DartGraph (global variable)

A diamond with a pendant vertex and maximum degree 4.
Example

gap> DartGraph;
Graph(Category := SimpleGraphs, Order := 5, Size :=
6, Adjacencies := [[2], [1, 3, 4, 5], [2, 4, 5], [2, 3],

[2, 3]])

B.4.2 DeclareQtfyProperty

. DeclareQtfyProperty(Name, Filter) (function)

For internal use.
Declares a YAGS quantifiable property named Name for filter Filter . This in turns, de-

clares a Boolean GAP property Name and an integer GAP attribute QtfyName .
The user must provide the method Name (Obj , qtfy). If qtfy is false, the method must

return a Boolean indicating whether the property holds, otherwise, the method must return a
non-negative integer quantifying how far is the object from satisfying the property. In the latter
case, returning 0 actually means that the object does satisfy the property.

YAGS 85

Example
gap> DeclareQtfyProperty("Is2Regular",Graphs);
gap> InstallMethod(Is2Regular,"for graphs",true,[Graphs,IsBool],0,
> function(G,qtfy)
> local x,count;
> count:=0;
> for x in Vertices(G) do
> if VertexDegree(G,x)<> 2 then
> if not qtfy then
> return false;
> fi;
> count:=count+1;
> fi;
> od;
> if not qtfy then return true; fi;
> return count;
> end);
gap> Is2Regular(CycleGraph(4));
true
gap> QtfyIs2Regular(CycleGraph(4));
0
gap> Is2Regular(DiamondGraph);
false
gap> QtfyIs2Regular(DiamondGraph);
2

B.4.3 Diameter

. Diameter(G) (attribute)

Returns the maximum among the distances between pairs of vertices of G .
Example

gap> g:=CycleGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2, 5], [1, 3], [2, 4], [3, 5], [1, 4]
])

gap> Diameter(g);
2

B.4.4 DiamondGraph

. DiamondGraph (global variable)

The graph on 4 vertices and 5 edges.
Example

gap> DiamondGraph;
Graph(Category := SimpleGraphs, Order := 4, Size :=

YAGS 86

5, Adjacencies := [[2, 3, 4], [1, 3], [1, 2, 4], [1, 3]])

B.4.5 DiscreteGraph

. DiscreteGraph(n) (function)

Returns the discrete graph of order n . A discrete graph is a graph without edges.
Example

gap> DiscreteGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
0, Adjacencies := [[], [], [], []])

B.4.6 DisjointUnion

. DisjointUnion(G, H) (operation)

Returns the disjoint union of two graphs G and H , G∪̇H.
Example

gap> g:=PathGraph(3);h:=PathGraph(2);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
Graph(Category := SimpleGraphs, Order := 2, Size :=
1, Adjacencies := [[2], [1]])
gap> DisjointUnion(g,h);
Graph(Category := SimpleGraphs, Order := 5, Size :=
3, Adjacencies := [[2], [1, 3], [2], [5], [4]])

B.4.7 Distance

. Distance(G, x, y) (operation)

Returns the minimum length of a path connecting x to y in G .
Example

gap> Distance(CycleGraph(5),1,3);
2
gap> Distance(CycleGraph(5),1,5);
1

B.4.8 Distances

. Distances(G, A, B) (operation)

Given two lists of vertices A , B of a graph G , Distances returns the list of distances for
every pair in the Cartesian product of A and B . The order of the vertices in lists A and B affects
the order of the list of distances returned.

YAGS 87

Example
gap> g:=CycleGraph(5);;
gap> Distances(g, [1,3], [2,4]);
[1, 2, 1, 1]
gap> Distances(g, [3,1], [2,4]);
[1, 1, 1, 2]

B.4.9 DistanceGraph

. DistanceGraph(G, Dist) (operation)

Given a graph G and a list of distances Dist , DistanceGraph returns the new graph con-
structed on the vertices of G where two vertices are adjacent iff the distance (in G) between them
belongs to the list Dist .

Example
gap> g:=CycleGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2, 5], [1, 3], [2, 4], [3, 5], [1, 4]
])

gap> DistanceGraph(g,[2]);
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[3, 4], [4, 5], [1, 5], [1, 2], [2, 3]
])

gap> DistanceGraph(g,[1,2]);
Graph(Category := SimpleGraphs, Order := 5, Size :=
10, Adjacencies := [[2, 3, 4, 5], [1, 3, 4, 5], [1, 2, 4, 5],

[1, 2, 3, 5], [1, 2, 3, 4]])

B.4.10 DistanceMatrix

. DistanceMatrix(G) (attribute)

Returns the distance matrix D of a graph G : D[x][y] is the distance in G from vertex x to
vertex y. The matrix may be asymmetric if the graph is not simple. An infinite entry in the
matrix means that there is no path between the vertices. Floyd’s algorithm is used to compute
the matrix.

Example
gap> g:=PathGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [1, 3], [2, 4], [3]])
gap> Display(DistanceMatrix(g));
[[0, 1, 2, 3],

[1, 0, 1, 2],
[2, 1, 0, 1],
[3, 2, 1, 0]]

gap> g:=PathGraph(4:GraphCategory:=OrientedGraphs);

YAGS 88

Graph(Category := OrientedGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [3], [4], []])
gap> Display(DistanceMatrix(g));
[[0, 1, 2, 3],

[infinity, 0, 1, 2],
[infinity, infinity, 0, 1],
[infinity, infinity, infinity, 0]]

B.4.11 DistanceSet

. DistanceSet(G, A, B) (operation)

Given two subsets of vertices A , B of a graph G , DistanceSet returns the set of distances
for every pair in the Cartesian product of A and B .

Example
gap> g:=CycleGraph(5);;
gap> DistanceSet(g, [1,3], [2,4]);
[1, 2]

B.4.12 Dodecahedron

. Dodecahedron (global variable)

The 1-skeleton of Plato’s dodecahedron.
Example

gap> Dodecahedron;
Graph(Category := SimpleGraphs, Order := 20, Size :=
30, Adjacencies := [[2, 5, 6], [1, 3, 7], [2, 4, 8],

[3, 5, 9], [1, 4, 10], [1, 11, 15], [2, 11, 12],
[3, 12, 13], [4, 13, 14], [5, 14, 15], [6, 7, 16],
[7, 8, 17], [8, 9, 18], [9, 10, 19], [6, 10, 20],
[11, 17, 20], [12, 16, 18], [13, 17, 19], [14, 18, 20],
[15, 16, 19]])

B.4.13 DominatedVertices

. DominatedVertices(G) (attribute)

Returns the set of dominated vertices of G .
A vertex x is dominated by another vertex y when the closed neighborhood of x is contained

in that of y. However, when there are twin vertices (mutually dominated vertices), exactly one
of them (in each equivalent class of mutually dominated vertices) does not appear in the returned
set.

YAGS 89

Example
gap> g1:=PathGraph(3);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
gap> DominatedVertices(g1);
[1, 3]
gap> g2:=PathGraph(2);
Graph(Category := SimpleGraphs, Order := 2, Size :=
1, Adjacencies := [[2], [1]])
gap> DominatedVertices(g2);
[2]

B.4.14 DominoGraph

. DominoGraph (global variable)

Two squares glued by an edge.
Example

gap> DominoGraph;
Graph(Category := SimpleGraphs, Order := 6, Size :=
7, Adjacencies := [[2, 4, 6], [1, 3], [2, 4], [1, 3, 5],

[4, 6], [1, 5]])

B.4.15 Draw

. Draw(G) (operation)

. Draw(G, Highlighted) (operation)

Takes a graph G and makes a drawing of it in a separate window possibly with a list of
Highlighted vertices. The user can then view and modify the drawing and finally save the
vertex coordinates of the drawing into the graph G .

Within the separate window, type h to toggle on/off the help menu. Besides the keyboard
commands indicated in the help menu, the user may also move vertices (by dragging them),
move the whole drawing (by dragging the background) and scale the drawing (by using the
mouse wheel).

Example
gap> Coordinates(Icosahedron);
fail
gap> Draw(Icosahedron);
gap> Coordinates(Icosahedron);
[[29, -107], [65, -239], [240, -62], [78, 79], [-107, 28],

[-174, -176], [-65, 239], [-239, 62], [-78, -79], [107, -28],
[174, 176], [-29, 107]]

In its second form, Highlighted is a list of vertices of G and those vertices are drawn in a
highlighted color by Draw().

YAGS 90

Example
gap> Draw(Cube,[1,4,6,7]);

Draw() uses an external Java program (included with YAGS) and hence, may not work on some
platforms.

Current version has been tested successfully on GNU/Linux, Mac OS X and Windows7.
For other platforms (specially 32-bit platforms), you should probably (at least) set up correctly
the variables YAGSInfo.Draw.prog and YAGSInfo.Draw.opts. The former is a string repre-
senting the external binary program path and name; the latter is a list of strings representing
the required command line options. Java binaries are provided for 32 and 64 bit versions of
GNU/Linux (which also works for Mac OS X) and of MS Windows.

Example
gap> YAGSInfo.Draw.prog; YAGSInfo.Draw.opts;
"/opt/gap4r8/pkg/yags/bin/draw/application.linux64/draw"
[]

The source code for the external program, made using processing
(http://processing.org version 2.2.1; version 3 is not working well for us), is
YAGS-DIR/bin/draw/draw.pde

B.4.16 DumpObject

. DumpObject(Obj) (operation)

Dumps all information available for object Obj . This information includes to which cate-
gories it belongs as well as its type and hashing information used by GAP.

Example
gap> DumpObject(true);
Object(TypeObj := NewType(NewFamily("BooleanFamily", [11], [11]),
[11, 34]), Categories := ["IS_BOOL"])

B.5 E

B.5.1 EasyExec

. EasyExec(Dir, ProgName, InString) (operation)

. EasyExec(ProgName, InString) (operation)

Calls external program ProgName located in directory Dir , feeding it with InString as
input and returning the output of the external program as a string. Dir must be a directory
object or a list of directory objects. If Dir is not provided, ProgName must be in the system’s
binary PATH. If the program could not be located, fail is returned.

http://processing.org

YAGS 91

Example
gap> s:=EasyExec("date","");;
gap> s;
"Sun Nov 9 10:36:16 CST 2014\n"
gap> s:=EasyExec("sort","4\n2\n3\n1");;
gap> s;
"1\n2\n3\n4\n"

This operation have not been tested on MS Windows.

B.5.2 Eccentricity

. Eccentricity(G, x) (function)

Returns the distance from a vertex x in graph G to its most distant vertex in G .
Example

gap> g:=PathGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
4, Adjacencies := [[2], [1, 3], [2, 4], [3, 5], [4]])
gap> Eccentricity(g,1);
4
gap> Eccentricity(g,3);
2

B.5.3 Edges

. Edges(G) (operation)

Returns the list of edges of the graph G in the case of SimpleGraphs.
Example

gap> g1:=CompleteGraph(3);
Graph(Category := SimpleGraphs, Order := 3, Size :=
3, Adjacencies := [[2, 3], [1, 3], [1, 2]])
gap> Edges(g1);
[[1, 2], [1, 3], [2, 3]]

In the case of UndirectedGraphs, it also returns the loops. While in the other categories,
Edges actually does not return the edges, but the loops and arrows of G .

Example
gap> g2:=CompleteGraph(3:GraphCategory:=UndirectedGraphs);
Graph(Category := UndirectedGraphs, Order := 3, Size :=
6, Adjacencies := [[1, 2, 3], [1, 2, 3], [1, 2, 3]])
gap> Edges(g2);
[[1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3, 3]]
gap> g3:=CompleteGraph(3:GraphCategory:=Graphs);
Graph(Category := Graphs, Order := 3, Size := 9, Adjacencies :=

YAGS 92

[[1, 2, 3], [1, 2, 3], [1, 2, 3]])
gap> Edges(g3);
[[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3],

[3, 1], [3, 2], [3, 3]]

B.5.4 EquivalenceRepresentatives

. EquivalenceRepresentatives(L, Eqiv) (operation)

Returns a sublist of L , which is a complete list of representatives of L under the equivalent
relation Equiv .

Example
gap> L:=[10,2,6,5,9,7,3,1,4,8];
[10, 2, 6, 5, 9, 7, 3, 1, 4, 8]
gap> EquivalenceRepresentatives(L,function(x,y) return (x mod 4)=(y mod 4); end);
[10, 5, 7, 4]
gap> L:=Links(SnubDisphenoid);;Length(L);
8
gap> L:=EquivalenceRepresentatives(L,IsIsomorphicGraph);;Length(L);
2
gap> L;
[Graph(Category := SimpleGraphs, Order := 5, Size :=

5, Adjacencies := [[2, 5], [1, 3], [2, 4], [3, 5],
[1, 4]]), Graph(Category := SimpleGraphs, Order :=

4, Size := 4, Adjacencies := [[2, 3], [1, 4], [1, 4],
[2, 3]])]

B.6 F

B.6.1 FanGraph

. FanGraph(n) (function)

Returns the n -fan: The join of a vertex and a (n+1) -path.
Example

gap> FanGraph(4);
Graph(Category := SimpleGraphs, Order := 6, Size :=
9, Adjacencies := [[2, 3, 4, 5, 6], [1, 3], [1, 2, 4],

[1, 3, 5], [1, 4, 6], [1, 5]])

B.6.2 FishGraph

. FishGraph (global variable)

A square and a triangle glued by a vertex.

YAGS 93

Example
gap> FishGraph;
Graph(Category := SimpleGraphs, Order := 6, Size :=
7, Adjacencies := [[2, 3, 4, 6], [1, 3], [1, 2], [1, 5],

[4, 6], [1, 5]])

B.7 G

B.7.1 GemGraph

. GemGraph (global variable)

The 3-fan graph.
Example

gap> GemGraph;
Graph(Category := SimpleGraphs, Order := 5, Size :=
7, Adjacencies := [[2, 3, 4, 5], [1, 3], [1, 2, 4],

[1, 3, 5], [1, 4]])

B.7.2 Girth

. Girth(G) (attribute)

Returns the length of a minimum cycle in G . At this time, Girth is defined only for
SimpleGraphs (B.19.3) and UndirectedGraphs (B.21.3). If G has loops, its girth is 1 by
definition.

Example
gap> Girth(Octahedron);
3
gap> Girth(PetersenGraph);
5
gap> Girth(Cube);
4
gap> Girth(PathGraph(5));
infinity
gap> g:=AddEdges(CycleGraph(4),[[3,3]]:GraphCategory:=UndirectedGraphs);
Graph(Category := UndirectedGraphs, Order := 4, Size :=
5, Adjacencies := [[2, 4], [1, 3], [2, 3, 4], [1, 3]])
gap> Girth(g);
1

B.7.3 Graph

. Graph(Rec) (operation)

YAGS 94

Returns a new graph created from the record Rec . The record must provide the field
Category and either the field Adjacencies or the field AdjMatrix .

Example
gap> Graph(rec(Category:=SimpleGraphs,Adjacencies:=[[2],[1]]));
Graph(Category := SimpleGraphs, Order := 2, Size :=
1, Adjacencies := [[2], [1]])
gap> Graph(rec(Category:=SimpleGraphs,AdjMatrix:=[[false, true],[true, false]]));
Graph(Category := SimpleGraphs, Order := 2, Size :=
1, Adjacencies := [[2], [1]])

Its main purpose is to import graphs from files, which could have been previously exported
using PrintTo.

Example
gap> g:=CycleGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])
gap> Print(g);
Graph(rec(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]]))
gap> PrintTo("aux.g","h:=",g,";");
gap> Read("aux.g");
gap> h;
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])

B.7.4 GraphAttributeStatistics

. GraphAttributeStatistics(OrderList, ProbList, Attribute) (function)

Returns statistics for graph attribute Attribute . For each of the orders n in OrderList
and for each of the probabilities p in ProbList this function generates 100 random graphs of
order n and edge probability p and then evaluates the graph attribute Attribute on each of
them. The function then returns statistical data on these experiments. The form in which the
statistical data is reported depend on a number of issues and is best explained by examples.

First let us consider the case where Attribute is a Boolean attribute (always returns true
or false) and where OrderList and ProbList consist of a unique value. In this case, the
respective lists may be replaced by the corresponding unique values on invocation:

Example
gap> GraphAttributeStatistics(10,1/2,IsCliqueHelly);
32

This tells us that 32 of the 100 examined random graphs resulted to be clique-Helly; The
random sample was constructed using graphs of order 10 and edge probability 1/2.

Now we can specify a list of probabilities to be examined:

YAGS 95

Example
gap> GraphAttributeStatistics(10,1/10*[1..9],IsCliqueHelly);
[100, 100, 94, 63, 34, 16, 30, 76, 95]

The last example tells us that, for graphs on 10 vertices, the property IsCliqueHelly is least
probable to be true for graphs with edge probabilities 5/10 6/10 and 7/10, being 6/10 the proba-
bility that reaches the minimum in the random sample. Note that the 34 in the previous example
does not match the 32 in the first one, this is to be expected as the statistics are compiled from
a random sample of graphs. Also, note that in the previous example, 900 random graphs where
generated and examined.

We can also specify a list of orders to consider:
Example

gap> GraphAttributeStatistics([10,12..20],1/10*[1..9],IsCliqueHelly);
[[100, 100, 92, 62, 37, 16, 36, 70, 97],

[100, 99, 83, 34, 8, 1, 19, 68, 97],
[100, 96, 54, 4, 2, 0, 6, 54, 98],
[100, 89, 26, 2, 0, 0, 9, 42, 96],
[100, 70, 13, 1, 0, 0, 6, 24, 94],
[99, 70, 5, 0, 0, 0, 4, 22, 92]]

gap> Display(last);
[[100, 100, 92, 62, 37, 16, 36, 70, 97],

[100, 99, 83, 34, 8, 1, 19, 68, 97],
[100, 96, 54, 4, 2, 0, 6, 54, 98],
[100, 89, 26, 2, 0, 0, 9, 42, 96],
[100, 70, 13, 1, 0, 0, 6, 24, 94],
[99, 70, 5, 0, 0, 0, 4, 22, 92]]

Which tell us that the observed bimodal distribution is even more pronounced when the order
of the graphs considered grows.

In the case of a non-Boolean attribute GraphAttributeStatistics() reports the values
that Attribute took on the sample as well as the number of times that each of these values
where obtained:

Example
gap> GraphAttributeStatistics(10,1/2,Diameter);
[[2, 34], [3, 59], [4, 5], [5, 1], [infinity, 1]]

The returned statistics mean that among the 100 generated random graphs on 10 vertices
with edge probability 1/2, there were 34 graphs with diameter 2, 59 graphs of diameter 3, 5 of
4, 1 of 5 and there was one graph which was not connected.

Now it should be evident the format of the returned statistics when we specify a list of
probabilities and/or a list of orders to be considered for a non-Boolean Attribute :

Example
gap> GraphAttributeStatistics(10,1/5*[1..4],Diameter);
[[[3, 1], [4, 7], [5, 8], [6, 6], [infinity, 78]],

[[2, 6], [3, 55], [4, 21], [5, 1], [6, 1],

YAGS 96

[infinity, 16]], [[2, 74], [3, 25], [4, 1]],
[[2, 100]]]

gap> GraphAttributeStatistics([10,12,14],1/5*[1..4],Diameter);
[[[[3, 2], [4, 8], [5, 11], [6, 5], [7, 1],

[infinity, 73]],
[[2, 6], [3, 56], [4, 23], [5, 7], [infinity, 8]],
[[2, 72], [3, 27], [infinity, 1]],
[[2, 99], [3, 1]]],

[
[[3, 4], [4, 13], [5, 10], [6, 6], [7, 3],

[infinity, 64]],
[[2, 7], [3, 69], [4, 17], [infinity, 7]],
[[2, 76], [3, 24]], [[2, 100]]],

[[[4, 12], [5, 16], [6, 7], [7, 3], [infinity, 62]],
[[2, 8], [3, 86], [4, 4], [infinity, 2]],
[[2, 86], [3, 14]], [[2, 100]]]]

B.7.5 Graph6ToGraph

. Graph6ToGraph(String) (operation)

Returns the graph represented by String which is encoded using Bren-
dan McKay’s graph6 format. This operation allows us to read data in
databases which use this format. Several such databases can be found here:
https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html.

The graph6 format is described here:
https://cs.anu.edu.au/people/Brendan.McKay/data/formats.txt.

Example
gap> Graph6ToGraph("D?{");
Graph(Category := SimpleGraphs, Order := 5, Size :=
4, Adjacencies := [[5], [5], [5], [5], [1, 2, 3, 4]])
gap> Graph6ToGraph("FUzvW");
Graph(Category := SimpleGraphs, Order := 7, Size :=
15, Adjacencies := [[3, 4, 5, 6, 7], [4, 5, 6, 7],

[1, 5, 6, 7], [1, 2, 6], [1, 2, 3, 7], [1, 2, 3, 4, 7],
[1, 2, 3, 5, 6]])

gap> Graph6ToGraph("HUzv~z}");
Graph(Category := SimpleGraphs, Order := 9, Size :=
29, Adjacencies := [[3, 4, 5, 6, 7, 8, 9], [4, 5, 6, 7, 8, 9],

[1, 5, 6, 7, 8, 9], [1, 2, 6, 7, 8, 9], [1, 2, 3, 7, 8, 9],
[1, 2, 3, 4, 7, 8, 9], [1, 2, 3, 4, 5, 6, 9],
[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6, 7]])

See also ImportGraph6 (B.9.2).

https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html
https://cs.anu.edu.au/people/Brendan.McKay/data/formats.txt

YAGS 97

B.7.6 GraphByAdjacencies

. GraphByAdjacencies(AdjList) (function)

Returns a new graph having AdjList as its list of adjacencies. The order of the created
graph is Length(AdjList), and the set of neighbors of vertex x is AdjList [x].

Example
gap> GraphByAdjacencies([[2],[1,3],[2]]);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])

Note, however, that the graph is forced to comply with the TargetGraphCategory.
Example

gap> GraphByAdjacencies([[1,2,3],[],[]]);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2, 3], [1], [1]])

B.7.7 GraphByAdjMatrix

. GraphByAdjMatrix(Mat) (function)

Returns a new graph created from an adjacency matrix Mat . The matrix Mat must be a
square boolean matrix.

Example
gap> m:=[[false, true, false], [true, false, true], [false, true, false]];;
gap> g:=GraphByAdjMatrix(m);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
gap> AdjMatrix(g);
[[false, true, false], [true, false, true],

[false, true, false]]

Note, however, that the graph is forced to comply with the TargetGraphCategory.
Example

gap> m:=[[true, true], [false, false]];;
gap> g:=GraphByAdjMatrix(m);
Graph(Category := SimpleGraphs, Order := 2, Size :=
1, Adjacencies := [[2], [1]])
gap> AdjMatrix(g);
[[false, true], [true, false]]

B.7.8 GraphByCompleteCover

. GraphByCompleteCover(Cover) (function)

Returns the minimal graph where the elements of Cover are (the vertex sets of) complete
subgraphs.

YAGS 98

Example
gap> GraphByCompleteCover([[1,2,3,4],[4,6,7]]);
Graph(Category := SimpleGraphs, Order := 7, Size :=
9, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3, 6, 7], [], [4, 7], [4, 6]])

B.7.9 GraphByEdges

. GraphByEdges(L) (function)

Returns the minimal graph such that the pairs in L are edges.
Example

gap> GraphByEdges([[1,2],[1,3],[1,4],[4,5]]);
Graph(Category := SimpleGraphs, Order := 5, Size :=
4, Adjacencies := [[2, 3, 4], [1], [1], [1, 5], [4]])

The vertices of the constructed graph range from 1 to the maximum of the numbers appearing
in L .

Example
gap> GraphByEdges([[4,3],[4,5]]);
Graph(Category := SimpleGraphs, Order := 5, Size :=
2, Adjacencies := [[], [], [4], [3, 5], [4]])

Note that GraphByWalks (B.7.11) can do the same and much more.

B.7.10 GraphByRelation

. GraphByRelation(V, Rel) (function)

. GraphByRelation(n, Rel) (function)

Returns a new graph created from a set of vertices V and a binary relation Rel , where x∼ y
iff Rel(x,y)=true. In the second form, n is an integer and V is assumed to be {1,2, . . . ,n}.

Example
gap> Rel:=function(x,y) return Intersection(x,y)<>[]; end;;
gap> GraphByRelation([[1,2,3],[3,4,5],[5,6,7]],Rel);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
gap> GraphByRelation(8,function(x,y) return AbsInt(x-y)<=2; end);
Graph(Category := SimpleGraphs, Order := 8, Size :=
13, Adjacencies := [[2, 3], [1, 3, 4], [1, 2, 4, 5],

[2, 3, 5, 6], [3, 4, 6, 7], [4, 5, 7, 8], [5, 6, 8],
[6, 7]])

YAGS 99

B.7.11 GraphByWalks

. GraphByWalks(Walk1, Walk2, ...) (function)

Returns the minimal graph such that Walk1 , Walk2 , etc are Walks.
Example

gap> GraphByWalks([1,2,3,4,1],[1,5,6]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
6, Adjacencies := [[2, 4, 5], [1, 3], [2, 4], [1, 3],

[1, 6], [5]])

Walks can be nested , which greatly improves the versatility of this function.
Example

gap> GraphByWalks([1,[2,3,4],5],[5,6]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
9, Adjacencies := [[2, 3, 4], [1, 3, 5], [1, 2, 4, 5],

[1, 3, 5], [2, 3, 4, 6], [5]])

The vertices in the constructed graph range from 1 to the maximum of the numbers appearing
in Walk1 , Walk2 , ... etc.

Example
gap> GraphByWalks([4,2],[3,6]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
2, Adjacencies := [[], [4], [6], [2], [], [3]])

B.7.12 GraphCategory

. GraphCategory([G, ...]) (function)

For internal use. Returns the minimal common graph category to a list of graphs. If the
list of graphs is empty, the default category is returned. The partial order (by inclusion) among
graph categories is as follows:

UndirectedGraphs

Graphs

SimpleGraphs

LooplessGraphs

OrientedGraphs

Example
gap> g1:=CompleteGraph(2:GraphCategory:=SimpleGraphs);
Graph(Category := SimpleGraphs, Order := 2, Size :=
1, Adjacencies := [[2], [1]])
gap> g2:=CompleteGraph(2:GraphCategory:=OrientedGraphs);

YAGS 100

Graph(Category := OrientedGraphs, Order := 2, Size :=
1, Adjacencies := [[2], []])
gap> g3:=CompleteGraph(2:GraphCategory:=UndirectedGraphs);
Graph(Category := UndirectedGraphs, Order := 2, Size :=
3, Adjacencies := [[1, 2], [1, 2]])
gap> GraphCategory([g1,g2,g3]);
<Category "Graphs">
gap> GraphCategory([g1,g2]);
<Category "LooplessGraphs">
gap> GraphCategory([g1,g3]);
<Category "UndirectedGraphs">

B.7.13 Graphs

. Graphs(G) (function)

Graphs is the most general graph category in YAGS. This category contains all graphs that
can be represented in YAGS. A graph in this category may contain loops, arrows and edges
(which in YAGS are exactly the same as two opposite arrows between some pair of vertices).
This graph category has no parent category.

Example
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=Graphs);
Graph(Category := Graphs, Order := 3, Size := 4, Adjacencies :=
[[1, 2], [1], [2]])
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=SimpleGraphs);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])

B.7.14 GraphsOfGivenOrder

. GraphsOfGivenOrder(n) (operation)

Returns the list of all graphs of order n (up to isomorphism). This operation uses Brendan
McKay’s data published here:

https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html.
These data are included with the YAGS distribution in its data directory. Hence this opera-

tion simply reads the corresponding file in that directory using ImportGraph6(Filename).
Therefore, the integer n must be in the range from 1 up to 9.

Example
gap> GraphsOfGivenOrder(2);
[Graph(Category := SimpleGraphs, Order := 2, Size :=

0, Adjacencies := [[], []]),
Graph(Category := SimpleGraphs, Order := 2, Size :=

1, Adjacencies := [[2], [1]])]
gap> GraphsOfGivenOrder(3);
[Graph(Category := SimpleGraphs, Order := 3, Size :=

https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html

YAGS 101

0, Adjacencies := [[], [], []]),
Graph(Category := SimpleGraphs, Order := 3, Size :=

1, Adjacencies := [[3], [], [1]]),
Graph(Category := SimpleGraphs, Order := 3, Size :=

2, Adjacencies := [[3], [3], [1, 2]]),
Graph(Category := SimpleGraphs, Order := 3, Size :=

3, Adjacencies := [[2, 3], [1, 3], [1, 2]])]
gap> Length(GraphsOfGivenOrder(9));
274668

Data for graphs on 10 vertices is also available, but not included with YAGS, it may not
be practical to use that data, but if you would like to try, all you have to do is to copy (and to
uncompress) the corresponding file into the directory YAGS-DIR/data/.

Example
gap> GraphsOfGivenOrder(10);
#W Unreadable File: /opt/gap4r8/pkg/yags/data/graph10.g6
fail

B.7.15 GraphSum

. GraphSum(G, L) (operation)

Returns the lexicographic sum of a list of graphs L over a graph G .
The lexicographic sum is computed as follows:
Given G , with Order(G) = n and a list of n graphs L = [G1, . . . ,Gn], we take the disjoint

union of G1,G2, . . . ,Gn and then we add all the edges between Gi and G j whenever [i, j] is and
edge of G .

If L contains holes, the trivial graph is used in place.
Example

gap> t:=TrivialGraph;; g:=CycleGraph(4);;
gap> GraphSum(PathGraph(3),[t,g,t]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[2, 3, 4, 5], [1, 3, 5, 6], [1, 2, 4, 6],

[1, 3, 5, 6], [1, 2, 4, 6], [2, 3, 4, 5]])
gap> GraphSum(PathGraph(3),[,g,]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[2, 3, 4, 5], [1, 3, 5, 6], [1, 2, 4, 6],

[1, 3, 5, 6], [1, 2, 4, 6], [2, 3, 4, 5]])

B.7.16 GraphToRaw

. GraphToRaw(FileName, G) (operation)

. GraphToRaw(FileName, G, Highlighted) (operation)

YAGS 102

Converts a YAGS graph G into a raw format (number of vertices, coordinates, adjacency
matrix, number of highlighted vertices and list of highlighted vertices) and writes the converted
data to the file FileName . For use by the external program draw (see Draw (B.4.15)). Intended
for internal use only.

Example
gap> g:=CycleGraph(4);;
gap> GraphToRaw("mygraph.raw",g);

If Highlighted is not specified, it is assumed to be the empty list. The vertices listed in
Highlighted are drawn in a highlighted color by Draw().

B.7.17 GraphUpdateFromRaw

. GraphUpdateFromRaw(FileName, G) (operation)

Updates the coordinates of G from a file FileName in raw format as written by draw (see
Draw (B.4.15)). Intended for internal use only.

B.7.18 GroupGraph

. GroupGraph(G, Grp, Act) (operation)

. GroupGraph(G, Grp) (operation)

Given a graph G , a group Grp and an action Act of Grp on some set S which con-
tains Vertices(G), GroupGraph returns a new graph with vertex set {Act(v,g) : g ∈ Grp ,v ∈
Vertices(G)} and edge set {{Act(v,g),Act(u,g)} : g ∈ Grp ,{u,v} ∈ Edges(G)}.

If Act is omitted, the standard GAP action OnPoints is used.
Example

gap> GroupGraph(GraphByWalks([1,2]),Group([(1,2,3,4,5),(2,5)(3,4)]));
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2, 5], [1, 3], [2, 4], [3, 5], [1, 4]
])

B.8 H

B.8.1 HararyToMcKay

. HararyToMcKay(Spec) (operation)

. McKayToHarary(index) (operation)

Returns the McKay’s index of a Harary’s graph specification Spec and vice versa. Frank
Harary published in his book [10], a list of all 208 simple graphs of order up to 6 (up to iso-
morphism). Each of them had a label (which we call Harary’s graph specification) of
the form [n, m, s] where n is the number of vertices, m is the number of edges, and s is a

YAGS 103

consecutive integer which uniquely identifies the graph from the others with the same n and m .
On the other hand, Brendan McKay published data sets containing a list of all graphs of order
up to 10 (also up to isomorphism), here:

https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html
Each graph in these data sets appears in some specific position (which we call McKay’s

index). We found it convenient to have an automated way to convert from Harary’s graph speci-
fications to McKay’s indexes and vice versa.

Example
gap> HararyToMcKay([1,0,1]);
1
gap> HararyToMcKay([1,0,2]);
fail
gap> HararyToMcKay([5,5,2]);
31
gap> HararyToMcKay([5,5,3]);
34
gap> HararyToMcKay([5,5,5]);
30
gap> HararyToMcKay([5,5,6]);
45
gap> HararyToMcKay([5,5,7]);
fail
gap> HararyToMcKay([6,15,1]);
208
gap> HararyToMcKay([6,15,2]);
fail

Example
gap> List([1..208],McKayToHarary);
[[1, 0, 1], [2, 0, 1], [2, 1, 1], [3, 0, 1], [3, 1, 1],

[3, 2, 1], [3, 3, 1], [4, 0, 1], [4, 1, 1], [4, 2, 1],
[4, 3, 3], [4, 2, 2], [4, 3, 1], [4, 3, 2], [4, 4, 1],

--- many more lines here ---

[6, 10, 10], [6, 10, 7], [6, 11, 3], [6, 12, 1], [6, 13, 1],
[6, 11, 7], [6, 11, 9], [6, 11, 8], [6, 12, 4], [6, 12, 5],
[6, 13, 2], [6, 14, 1], [6, 15, 1]]

gap> McKayToHarary(209);
fail

B.8.2 HouseGraph

. HouseGraph (global variable)

A 4-cycle and a triangle glued by an edge.

https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html

YAGS 104

Example
gap> HouseGraph;
Graph(Category := SimpleGraphs, Order := 5, Size :=
6, Adjacencies := [[2, 4, 5], [1, 3], [2, 4], [1, 3, 5],

[1, 4]])

B.9 I

B.9.1 Icosahedron

. Icosahedron (global variable)

The 1-skeleton of Plato’s icosahedron.
Example

gap> Icosahedron;
Graph(Category := SimpleGraphs, Order := 12, Size :=
30, Adjacencies := [[2, 3, 4, 5, 6], [1, 3, 6, 9, 10],

[1, 2, 4, 10, 11], [1, 3, 5, 7, 11], [1, 4, 6, 7, 8],
[1, 2, 5, 8, 9], [4, 5, 8, 11, 12], [5, 6, 7, 9, 12],
[2, 6, 8, 10, 12], [2, 3, 9, 11, 12], [3, 4, 7, 10, 12],
[7, 8, 9, 10, 11]])

B.9.2 ImportGraph6

. ImportGraph6(Filename) (operation)

Returns the list of graphs represented in Filename which are encoded using Brendan
McKay’s graph6 format. This operation allows us to read data in databases which use this
format. Several such databases can be found here:

https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html.
The graph6 format is described here:
https://cs.anu.edu.au/people/Brendan.McKay/data/formats.txt.
The following example assumes that you have a file named graph3.g6 in your working

directory which encodes graphs in graph6 format; the contents of this file is assumed to be as
indicated after the first command in the example. It is also assumed that your Operative System
is a Unix-like system.

Example
gap> Exec("cat graph3.g6");
B?
BO
BW
Bw
gap> ImportGraph6("graph3.g6");
[Graph(Category := SimpleGraphs, Order := 3, Size := 0, Adjacencies :=

[[], [], []]), Graph(Category := SimpleGraphs, Order :=

https://cs.anu.edu.au/people/Brendan.McKay/data/graphs.html
https://cs.anu.edu.au/people/Brendan.McKay/data/formats.txt

YAGS 105

3, Size := 1, Adjacencies := [[3], [], [1]]),
Graph(Category := SimpleGraphs, Order := 3, Size := 2, Adjacencies :=

[[3], [3], [1, 2]]), Graph(Category := SimpleGraphs, Order :=
3, Size := 3, Adjacencies := [[2, 3], [1, 3], [1, 2]])]

See also Graph6ToGraph (B.7.5).

B.9.3 in

. in(G, Catgy) (operation)

Returns true if graph G belongs to category Catgy and false otherwise.
Example

gap> g:=WheelGraph(4);
Graph(Category := SimpleGraphs, Order := 5, Size :=
8, Adjacencies := [[2, 3, 4, 5], [1, 3, 5], [1, 2, 4],

[1, 3, 5], [1, 2, 4]])
gap> g in SimpleGraphs;
true
gap> g in Graphs;
true
gap> g in OrientedGraphs;
false

B.9.4 InducedSubgraph

. InducedSubgraph(G, V) (operation)

Returns the subgraph of the graph G induced by the vertex set V .
Example

gap> g:=CycleGraph(6);
Graph(Category := SimpleGraphs, Order := 6, Size :=
6, Adjacencies := [[2, 6], [1, 3], [2, 4], [3, 5], [4, 6],

[1, 5]])
gap> InducedSubgraph(g,[3,4,6]);
Graph(Category := SimpleGraphs, Order := 3, Size :=
1, Adjacencies := [[2], [1], []])

The order of the elements in V does matter.
Example

gap> InducedSubgraph(g,[6,3,4]);
Graph(Category := SimpleGraphs, Order := 3, Size :=
1, Adjacencies := [[], [3], [2]])

YAGS 106

B.9.5 InNeigh

. InNeigh(G, x) (operation)

Returns the list of in-neighbors of x in G .
Example

gap> tt:=CompleteGraph(5:GraphCategory:=OrientedGraphs);
Graph(Category := OrientedGraphs, Order := 5, Size :=
10, Adjacencies := [[2, 3, 4, 5], [3, 4, 5], [4, 5], [5],

[]])
gap> InNeigh(tt,3);
[1, 2]
gap> OutNeigh(tt,3);
[4, 5]

B.9.6 InteriorVertices

. InteriorVertices(G) (attribute)

When G is (an underlying graph of a Whitney triangulation of) a compact surface, it returns
the list of vertices in the interior (of the triangulation) of the surface. That is, the list of vertices
of G that have links isomorphic to a cycle. It returns fail if G is not a compact surface.

Example
gap> InteriorVertices(WheelGraph(4,2));
[1, 2, 3, 4, 5]
gap> InteriorVertices(Octahedron);
[1, 2, 3, 4, 5, 6]

B.9.7 IntersectionGraph

. IntersectionGraph(L) (function)

Returns the intersection graph of the family of sets L . This graph has a vertex for every set
in L , and two such vertices are adjacent iff the corresponding sets have non-empty intersection.

Example
gap> IntersectionGraph([[1,2,3],[3,4,5],[5,6,7]]);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])

B.9.8 IsBoolean

. IsBoolean(Obj) (function)

Returns true if object Obj is true or false and false otherwise.

YAGS 107

Example
gap> IsBoolean(true); IsBoolean(fail); IsBoolean (false);
true
false
true

B.9.9 IsCliqueGated

. IsCliqueGated(G) (property)

Returns true if G is a clique gated graph [9].
This operation reports progress at InfoLevel 1 (see B.24.3).

B.9.10 IsCliqueHelly

. IsCliqueHelly(G) (property)

Returns true if the set of (maximal) cliques G satisfy the Helly property.
The Helly property is defined as follows:
A non-empty family F of non-empty sets satisfies the Helly property if every pairwise inter-

secting subfamily of F has a non-empty total intersection.
Here we use the Dragan-Szwarcfiter characterization [5][29] to compute the Helly property.

Example
gap> g:=SunGraph(3);
Graph(Category := SimpleGraphs, Order := 6, Size :=
9, Adjacencies := [[2, 6], [1, 3, 4, 6], [2, 4],

[2, 3, 5, 6], [4, 6], [1, 2, 4, 5]])
gap> IsCliqueHelly(g);
false

B.9.11 IsCompactSurface

. IsCompactSurface(G) (property)

Returns true if every link of G is either an n -cycle, for n≥ 4 or an m -path, for m≥ 2. (not
necessarily the same n /m for all vertices); it returns false otherwise.

This notion correspond to Whitney triangulations of compact surfaces [15] in which the
(maximal) cliques of the graph are exactly the triangles of the triangulation.

Example
gap> IsCompactSurface(Icosahedron);
true
gap> IsCompactSurface(RemoveVertices(Icosahedron,[1]));
true
gap> IsCompactSurface(WheelGraph(4,2));

YAGS 108

true
gap> IsCompactSurface(Tetrahedron);
false
gap> IsCompactSurface(CompleteGraph(2));
false
gap> IsCompactSurface(CompleteGraph(3));
true
gap> IsCompactSurface(CompleteGraph(4));
false

Topologically, the difference between a surface and a compact surface is that the points of
a surface always have a open neighborhood homeomorphic to an open disk, whereas a compact
surface may also contain points with open neighborhoods homeomorphic to a closed half-plane.

B.9.12 IsComplete

. IsComplete(G, L) (operation)

Returns true if L induces a complete subgraph of G .
Example

gap> IsComplete(DiamondGraph,[1,2,3]);
true
gap> IsComplete(DiamondGraph,[1,2,4]);
false

B.9.13 IsCompleteGraph

. IsCompleteGraph(G) (property)

Returns true if graph G is a complete graph, false otherwise. In a complete graph every
pair of vertices is an edge.

B.9.14 IsDiamondFree

. IsDiamondFree(G) (property)

Returns true if G is free from induced diamonds (see DiamondGraph (B.4.4)); false oth-
erwise.

Example
gap> IsDiamondFree(Cube);
true
gap> IsDiamondFree(Octahedron);
false

YAGS 109

B.9.15 IsEdge

. IsEdge(G, x, y) (operation)

. IsEdge(G, e) (operation)

Returns true if e:=[x,y] is an edge of G .
Example

gap> IsEdge(PathGraph(3),1,2);
true
gap> IsEdge(PathGraph(3),[1,2]);
true
gap> IsEdge(PathGraph(3),1,3);
false
gap> IsEdge(PathGraph(3),[1,3]);
false

The first form, IsEdge(G, x, y), is a bit faster and hence more suitable for use in algo-
rithms which make extensive use of this operation. On the other hand, the first form does no
error checking at all, and hence, it may produce an error where the second form returns false
(for instance when x is not a vertex of G). The second form is therefore a bit slower, but more
robust.

Example
gap> IsEdge(PathGraph(3),[7,3]);
false
gap> IsEdge(PathGraph(3),7,3);
Error, List Element: <list>[7] must have an assigned value

B.9.16 IsIsomorphicGraph

. IsIsomorphicGraph(G, H) (operation)

Returns true when G is isomorphic to H and false otherwise.
Example

gap> g:=PowerGraph(CycleGraph(6),2);;h:=Octahedron;;
gap> IsIsomorphicGraph(g,h);
true

B.9.17 IsLocallyConstant

. IsLocallyConstant(G) (property)

Returns true if all the links of G are isomorphic to each other; false otherwise.
Example

gap> IsLocallyConstant(PathGraph(2));
true

YAGS 110

gap> IsLocallyConstant(PathGraph(3));
false
gap> IsLocallyConstant(CompleteGraph(3));
true
gap> IsLocallyConstant(CycleGraph(4));
true
gap> IsLocallyConstant(Icosahedron);
true
gap> IsLocallyConstant(TorusGraph(5,4));
true
gap> IsLocallyConstant(WheelGraph(4,2));
false
gap> IsLocallyConstant(SnubDisphenoid);
false

B.9.18 IsLocallyH

. IsLocallyH(G, H) (operation)

Returns true if all the links of G are isomorphic to H ; false otherwise.
Example

gap> IsLocallyH(Octahedron,CycleGraph(4));
true
gap> IsLocallyH(Octahedron,CycleGraph(5));
false
gap> IsLocallyH(Icosahedron,CycleGraph(5));
true
gap> IsLocallyH(TorusGraph(4,4),CycleGraph(6));
true

B.9.19 IsLoopless

. IsLoopless(G) (property)

Returns true if the graph G have no loops; false otherwise. Loops are edges from a vertex
to itself.

B.9.20 IsoMorphism

. IsoMorphism(G, H) (operation)

Returns one isomorphism from G to H or fail if none exists. If G has n vertices, an isomor-
phisms f : G → H is represented as the list F=[f(1), f(2), ..., f(n)].

YAGS 111

Example
gap> g:=CycleGraph(4);;h:=CompleteBipartiteGraph(2,2);;
gap> f:=IsoMorphism(g,h);
[1, 3, 2, 4]

See NextIsoMorphism (B.14.1).

B.9.21 IsoMorphisms

. IsoMorphisms(G, H) (operation)

Returns the list of all isomorphism from G to H . If G has n vertices, an isomorphisms
f : G → H is represented as the list F=[f(1), f(2), ..., f(n)].

Example
gap> g:=CycleGraph(4);;h:=CompleteBipartiteGraph(2,2);;
gap> IsoMorphisms(g,h);
[[1, 3, 2, 4], [1, 4, 2, 3], [2, 3, 1, 4], [2, 4, 1, 3],

[3, 1, 4, 2], [3, 2, 4, 1], [4, 1, 3, 2], [4, 2, 3, 1]]

B.9.22 IsOriented

. IsOriented(G) (property)

Returns true if the graph G is an oriented graph, false otherwise. Regardless of the cate-
gories that G belongs to, G is oriented if whenever [x,y] is an edge of G , [y,x] is not.

B.9.23 IsSimple

. IsSimple(G) (property)

Returns true if the graph G is a simple graph, false otherwise. Regardless of the categories
that G belongs to, G is simple if and only if G is undirected and loopless.

B.9.24 IsSurface

. IsSurface(G) (property)

Returns true if every link of G is an n -cycle, for n ≥ 4 (not necessarily the same n for all
vertices); false otherwise.

This notion correspond to Whitney triangulations of (closed) surfaces [15] in which the
(maximal) cliques of the graph are exactly the triangles of the triangulation.

Example
gap> IsSurface(SnubDisphenoid);
true
gap> IsSurface(Icosahedron);

YAGS 112

true
gap> IsSurface(RemoveVertices(Icosahedron,[1]));
false
gap> IsSurface(TorusGraph(4,5));
true
gap> IsSurface(WheelGraph(4,2));
false
gap> IsSurface(Tetrahedron);
false

Topologically, the difference between a (closed) surface and a compact surface is that the
points of a surface always have a open neighborhood homeomorphic to an open disk, whereas
a compact surface may also contain points with open neighborhoods homeomorphic to a closed
half-plane.

B.9.25 IsTournament

. IsTournament(G) (property)

Returns true if G is a tournament. A tournament is a graph without loops and such that for
every pair of vertices x, y, either [x,y] is an arrow of G , or [y,x] is an arrow of G , but not
both.

Example
gap> tt:=CompleteGraph(5:GraphCategory:=OrientedGraphs);
Graph(Category := OrientedGraphs, Order := 5, Size :=
10, Adjacencies := [[2, 3, 4, 5], [3, 4, 5], [4, 5], [5],

[]])
gap> IsTournament(tt);
true

B.9.26 IsTransitiveTournament

. IsTransitiveTournament(G) (property)

Returns true if G is a transitive tournament. A tournament is a transitive tournament if
whenever [x,y] and [y,z] are arrows of the tournament, [x,z] is also an arrow of the tourna-
ment.

Example
gap> tt:=CompleteGraph(5:GraphCategory:=OrientedGraphs);
Graph(Category := OrientedGraphs, Order := 5, Size :=
10, Adjacencies := [[2, 3, 4, 5], [3, 4, 5], [4, 5], [5],

[]])
gap> IsTransitiveTournament(tt);
true

YAGS 113

B.9.27 IsUndirected

. IsUndirected(G) (property)

Returns true if the graph G is an undirected graph; false otherwise. Regardless of the
categories that G belongs to, G is undirected if whenever [x,y] is an edge of G , [y,x] is also
an edge of G .

B.10 J

B.10.1 JohnsonGraph

. JohnsonGraph(n, r) (function)

Returns the Johnson graph J(n,r). The Johnson graph is the graph whose vertices are r -
subset of the set {1,2, . . . ,n}, two of them being adjacent iff they intersect in exactly r-1 ele-
ments.

Example
gap> g:=JohnsonGraph(4,2);
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[2, 3, 4, 5], [1, 3, 4, 6], [1, 2, 5, 6],

[1, 2, 5, 6], [1, 3, 4, 6], [2, 3, 4, 5]])
gap> VertexNames(g);
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

B.10.2 Join

. Join(G, H) (operation)

Returns the join graph G + H of G and H (also known as the Zykov sum); it is the graph
obtained from the disjoint union of G and H by adding every possible edge from every vertex in
G to every vertex in H .

Example
gap> g:=DiscreteGraph(2);h:=CycleGraph(4);
Graph(Category := SimpleGraphs, Order := 2, Size :=
0, Adjacencies := [[], []])
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])
gap> Join(g,h);
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[3, 4, 5, 6], [3, 4, 5, 6], [1, 2, 4, 6],

[1, 2, 3, 5], [1, 2, 4, 6], [1, 2, 3, 5]])

YAGS 114

B.11 K

B.11.1 KiteGraph

. KiteGraph (global variable)

A diamond (see DiamondGraph (B.4.4)) with a pendant vertex and maximum degree 3.
Example

gap> KiteGraph;
Graph(Category := SimpleGraphs, Order := 5, Size :=
6, Adjacencies := [[2], [1, 3, 4], [2, 4, 5], [2, 3, 5],

[3, 4]])

B.12 L

B.12.1 LineGraph

. LineGraph(G) (operation)

Returns the line graph, L(G) , of graph G . The line graph is the intersection graph of the
edges of G , i.e. the vertices of L(G) are the edges of G two of them being adjacent iff they are
incident.

Example
gap> g:=Tetrahedron;
Graph(Category := SimpleGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])
gap> LineGraph(g);
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[2, 3, 4, 5], [1, 3, 4, 6], [1, 2, 5, 6],

[1, 2, 5, 6], [1, 3, 4, 6], [2, 3, 4, 5]])

B.12.2 Link

. Link(G, x) (operation)

Returns the subgraph of G induced by the neighbors of x .
Example

gap> Link(SnubDisphenoid,1);
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2, 5], [1, 3], [2, 4], [3, 5], [1, 4]
])

gap> Link(SnubDisphenoid,3);
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 3], [1, 4], [1, 4], [2, 3]])

YAGS 115

B.12.3 Links

. Links(G) (attribute)

Returns the list of subgraphs of G induced by the neighbors of each vertex of G .
Example

gap> Links(SnubDisphenoid);
[Graph(Category := SimpleGraphs, Order := 5, Size :=

5, Adjacencies := [[2, 5], [1, 3], [2, 4], [3, 5],
[1, 4]]), Graph(Category := SimpleGraphs, Order :=

5, Size := 5, Adjacencies := [[2, 5], [1, 3], [2, 4],
[3, 5], [1, 4]]),

Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 3], [1, 4], [1, 4], [2, 3]]),

Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 3], [1, 4], [1, 4], [2, 3]]),

Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2, 5], [1, 3], [2, 4], [3, 5],

[1, 4]]), Graph(Category := SimpleGraphs, Order :=
5, Size := 5, Adjacencies := [[2, 5], [1, 3], [2, 4],

[3, 5], [1, 4]]),
Graph(Category := SimpleGraphs, Order := 4, Size :=

4, Adjacencies := [[3, 4], [3, 4], [1, 2], [1, 2]]),
Graph(Category := SimpleGraphs, Order := 4, Size :=

4, Adjacencies := [[2, 3], [1, 4], [1, 4], [2, 3]])]

B.12.4 LooplessGraphs

. LooplessGraphs(G) (function)

LooplessGraphs is a graph category in YAGS. A graph in this category may contain arrows
and edges but no loops. The parent of this category is Graphs.

Example
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=Graphs);
Graph(Category := Graphs, Order := 3, Size := 4, Adjacencies :=
[[1, 2], [1], [2]])
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=LooplessGraphs);
Graph(Category := LooplessGraphs, Order := 3, Size :=
3, Adjacencies := [[2], [1], [2]])

B.13 M

B.13.1 MaxDegree

. MaxDegree(G) (operation)

Returns the maximum degree of a vertex in the graph G .

YAGS 116

Example
gap> g:=GemGraph;
Graph(Category := SimpleGraphs, Order := 5, Size :=
7, Adjacencies := [[2, 3, 4, 5], [1, 3], [1, 2, 4],

[1, 3, 5], [1, 4]])
gap> MaxDegree(g);
4

B.13.2 MinDegree

. MinDegree(G) (operation)

Returns the minimum degree of a vertex in the graph G .
Example

gap> g:=GemGraph;
Graph(Category := SimpleGraphs, Order := 5, Size :=
7, Adjacencies := [[2, 3, 4, 5], [1, 3], [1, 2, 4],

[1, 3, 5], [1, 4]])
gap> MinDegree(g);
2

B.14 N

B.14.1 NextIsoMorphism

. NextIsoMorphism(G, H, F) (operation)

Returns the next isomorphism (after F) from G to H in the lexicographic order; returns fail
if there are no more isomorphisms. If G has n vertices, an isomorphisms f : G → H is represented
as the list F=[f(1), f(2), ..., f(n)].

Example
gap> g:=CycleGraph(4);;h:=CompleteBipartiteGraph(2,2);;
gap> f:=IsoMorphism(g,h);
[1, 3, 2, 4]
gap> NextIsoMorphism(g,h,f);
[1, 4, 2, 3]
gap> NextIsoMorphism(g,h,f);
[2, 3, 1, 4]
gap> NextIsoMorphism(g,h,f);
[2, 4, 1, 3]

B.14.2 NextPropertyMorphism

. NextPropertyMorphism(G, H, F, PropList) (operation)

YAGS 117

Returns the next morphism (in lexicographic order) from G to H satisfying the list of
properties PropList starting with (possibly incomplete) morphism F . The morphism found
will be returned and stored in F in order to use it as the next starting point, in case
NextPropertyMorphism is called again. The operation returns fail if there are no more mor-
phisms of the specified type (but, for technical reasons, F stores the list [fail] instead).

A number of preprogrammed properties are provided by YAGS, and the user may create
additional ones. The properties provided are: CHK_WEAK, CHK_MORPH, CHK_METRIC, CHK_CMPLT,
CHK_MONO and CHK_EPI.

If G has n vertices and f : G → H is a morphism, it is represented as F=[f(1), f(2), ...,
f(n)].

Example
gap> g:=CycleGraph(4);;h:=CompleteBipartiteGraph(2,2);;
gap> f:=[];; PropList:=[CHK_MORPH,CHK_MONO];;
gap> NextPropertyMorphism(g,h,f,PropList);
[1, 3, 2, 4]
gap> NextPropertyMorphism(g,h,f,PropList);
[1, 4, 2, 3]
gap> NextPropertyMorphism(g,h,f,PropList);
[2, 3, 1, 4]
gap> NextPropertyMorphism(g,h,f,PropList);
[2, 4, 1, 3]
gap> NextPropertyMorphism(g,h,f,PropList);
[3, 1, 4, 2]
gap> NextPropertyMorphism(g,h,f,PropList);
[3, 2, 4, 1]
gap> NextPropertyMorphism(g,h,f,PropList);
[4, 1, 3, 2]
gap> NextPropertyMorphism(g,h,f,PropList);
[4, 2, 3, 1]
gap> NextPropertyMorphism(g,h,f,PropList);
fail

This operation reports progress at InfoLevel 3 (see B.24.3 and Section 6.4).
Extensive information about graph morphisms can be found in Chapter 5.

B.14.3 NumberOfCliques

. NumberOfCliques(G) (attribute)

. NumberOfCliques(G, maxNumCli) (operation)

Returns the number of (maximal) cliques of G . In the second form, it stops computing
cliques after maxNumCli of them have been counted and returns maxNumCli in case G has
maxNumCli or more cliques.

Example
gap> NumberOfCliques(Icosahedron,15);
15

YAGS 118

gap> NumberOfCliques(Icosahedron);
20
gap> NumberOfCliques(Icosahedron,50);
20

This implementation discards the cliques once counted hence, given enough time, it can
compute the number of cliques of G even if the set of cliques does not fit in memory. This test
may take several minutes to complete:

Example
gap> NumberOfCliques(OctahedralGraph(30));
1073741824

This operation reports progress at InfoLevel 1 (see B.24.3).

B.14.4 NumberOfConnectedComponents

. NumberOfConnectedComponents(G) (attribute)

Returns the number of connected components of G . See ConnectedComponents (B.3.17).

B.15 O

B.15.1 OctahedralGraph

. OctahedralGraph(n) (function)

Return the n -dimensional octahedron. This is the complement of n copies of K2 (an edge).
It is also the (2n-2) -regular graph on 2n vertices.

Example
gap> OctahedralGraph(3);
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[3, 4, 5, 6], [3, 4, 5, 6], [1, 2, 5, 6],

[1, 2, 5, 6], [1, 2, 3, 4], [1, 2, 3, 4]])

B.15.2 Octahedron

. Octahedron (global variable)

The 1-skeleton of Plato’s octahedron.
Example

gap> Octahedron;
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[3, 4, 5, 6], [3, 4, 5, 6], [1, 2, 5, 6],

[1, 2, 5, 6], [1, 2, 3, 4], [1, 2, 3, 4]])

YAGS 119

B.15.3 Order

. Order(G) (attribute)

Returns the number of vertices, of the graph G .
Example

gap> Order(Icosahedron);
12

B.15.4 Orientations

. Orientations(G) (operation)

Returns the list of all the oriented graphs that are obtained from G by replacing (in every
possible way) each edge [x,y] of G by one arrow: either [x,y] or [y,x]. In each of these
orientations the loops are removed and existing arrows of G are left untouched.

Note that this operation will use time and memory which is exponential on the number of
edges of G .

Example
gap> g:=GraphByWalks([1,1,2,3,1,3,2]:GraphCategory:=Graphs);
Graph(Category := Graphs, Order := 3, Size := 6, Adjacencies :=
[[1, 2, 3], [3], [1, 2]])
gap> Orientations(g);
[Graph(Category := OrientedGraphs, Order := 3, Size :=

3, Adjacencies := [[2], [], [1, 2]]),
Graph(Category := OrientedGraphs, Order := 3, Size :=

3, Adjacencies := [[2], [3], [1]]),
Graph(Category := OrientedGraphs, Order := 3, Size :=

3, Adjacencies := [[2, 3], [], [2]]),
Graph(Category := OrientedGraphs, Order := 3, Size :=

3, Adjacencies := [[2, 3], [3], []])]
gap> Length(Orientations(Octahedron));
4096

Note that Orientations(G) returns a list of graphs, each of them in the category
OrientedGraphs regardless of the TargetGraphCategory.

This operation reports progress at InfoLevel 3 (see B.24.3 and Section 6.4).

B.15.5 OrientedGraphs

. OrientedGraphs(G) (function)

OrientedGraphs is a graph category in YAGS. A graph in this category may contain arrows,
but no loops or edges. The parent of this category is LooplessGraphs.

YAGS 120

Example
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=Graphs);
Graph(Category := Graphs, Order := 3, Size := 4, Adjacencies :=
[[1, 2], [1], [2]])
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=OrientedGraphs);
Graph(Category := OrientedGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [], [2]])

B.15.6 OutNeigh

. OutNeigh(G, x) (operation)

Returns the list of out-neighbors of x in G .
Example

gap> tt:=CompleteGraph(5:GraphCategory:=OrientedGraphs);
Graph(Category := OrientedGraphs, Order := 5, Size :=
10, Adjacencies := [[2, 3, 4, 5], [3, 4, 5], [4, 5], [5],

[]])
gap> InNeigh(tt,3);
[1, 2]
gap> OutNeigh(tt,3);
[4, 5]

B.16 P

B.16.1 PaleyTournament

. PaleyTournament(prime) (operation)

Returns the Paley tournament associated with prime number prime . The prime must be
congruent to 3 mod 4. The Paley tournament is the oriented circulant whose jumps are all the
squares of the ring Zp.

Example
gap> Filtered([1..30],x -> 0=((x-3) mod 4) and IsPrime(x));
[3, 7, 11, 19, 23]
gap> PaleyTournament(3);PaleyTournament(7);PaleyTournament(11);
Graph(Category := OrientedGraphs, Order := 3, Size :=
3, Adjacencies := [[2], [3], [1]])
Graph(Category := OrientedGraphs, Order := 7, Size :=
21, Adjacencies := [[2, 3, 5], [3, 4, 6], [4, 5, 7],

[1, 5, 6], [2, 6, 7], [1, 3, 7], [1, 2, 4]])
Graph(Category := OrientedGraphs, Order := 11, Size :=
55, Adjacencies := [[2, 4, 5, 6, 10], [3, 5, 6, 7, 11],

[1, 4, 6, 7, 8], [2, 5, 7, 8, 9], [3, 6, 8, 9, 10],
[4, 7, 9, 10, 11], [1, 5, 8, 10, 11], [1, 2, 6, 9, 11],
[1, 2, 3, 7, 10], [2, 3, 4, 8, 11], [1, 3, 4, 5, 9]])

YAGS 121

gap> PaleyTournament(5);
fail

Note that PaleyTournament(prime) returns a graph in the category OrientedGraphs
regardless of the TargetGraphCategory.

B.16.2 ParachuteGraph

. ParachuteGraph (global variable)

The complement of a ParapluieGraph; The suspension of a 4-path with a pendant vertex
attached to the south pole.

Example
gap> ParachuteGraph;
Graph(Category := SimpleGraphs, Order := 7, Size :=
12, Adjacencies := [[2], [1, 3, 4, 5, 6], [2, 4, 7],

[2, 3, 5, 7], [2, 4, 6, 7], [2, 5, 7], [3, 4, 5, 6]])

B.16.3 ParapluieGraph

. ParapluieGraph (global variable)

A 3-fan graph with a 3-path attached to the universal vertex.
Example

gap> ParapluieGraph;
Graph(Category := SimpleGraphs, Order := 7, Size :=
9, Adjacencies := [[2], [1, 3], [2, 4, 5, 6, 7], [3, 5],

[3, 4, 6], [3, 5, 7], [3, 6]])

B.16.4 ParedGraph

. ParedGraph(G) (operation)

Returns the pared graph of G . This is the induced subgraph obtained from G by removing its
dominated vertices. When there are twin vertices (mutually dominated vertices), exactly one of
them survives the paring in each equivalent class of mutually dominated vertices.

Example
gap> g1:=PathGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [1, 3], [2, 4], [3]])
gap> ParedGraph(g1);
Graph(Category := SimpleGraphs, Order := 2, Size :=
1, Adjacencies := [[2], [1]])
gap> g2:=PathGraph(2);
Graph(Category := SimpleGraphs, Order := 2, Size :=

YAGS 122

1, Adjacencies := [[2], [1]])
gap> ParedGraph(g2);
Graph(Category := SimpleGraphs, Order := 1, Size :=
0, Adjacencies := [[]])

This operation reports progress at InfoLevel 1 (see B.24.3).

B.16.5 PathGraph

. PathGraph(n) (function)

Returns the path graph on n vertices.
Example

gap> PathGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [1, 3], [2, 4], [3]])

B.16.6 PawGraph

. PawGraph (global variable)

The graph on 4 vertices, 4 edges and maximum degree 3: A triangle with a pendant vertex.
Example

gap> PawGraph;
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2], [1, 3, 4], [2, 4], [2, 3]])

B.16.7 PetersenGraph

. PetersenGraph (global variable)

The 3-regular graph on 10 vertices having girth 5.
Example

gap> PetersenGraph;
Graph(Category := SimpleGraphs, Order := 10, Size :=
15, Adjacencies := [[2, 5, 6], [1, 3, 7], [2, 4, 8],

[3, 5, 9], [1, 4, 10], [1, 8, 9], [2, 9, 10], [3, 6, 10],
[4, 6, 7], [5, 7, 8]])

B.16.8 PowerGraph

. PowerGraph(G, exp) (operation)

YAGS 123

Returns the DistanceGraph (B.4.9) of G using [0, 1, ..., exp] as the list of dis-
tances. Note that the distance 0 in the list produces loops in the new graph only when the
TargetGraphCategory admits loops.

Example
gap> g:=PathGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
4, Adjacencies := [[2], [1, 3], [2, 4], [3, 5], [4]])
gap> PowerGraph(g,1);
Graph(Category := SimpleGraphs, Order := 5, Size :=
4, Adjacencies := [[2], [1, 3], [2, 4], [3, 5], [4]])
gap> PowerGraph(g,1:GraphCategory:=Graphs);
Graph(Category := Graphs, Order := 5, Size := 13, Adjacencies :=
[[1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5]])

B.16.9 PropertyMorphism

. PropertyMorphism(G, H, PropList) (operation)

Returns the first morphism (in lexicographic order) from G to H satisfying the list of proper-
ties PropList .

A number of preprogrammed properties are provided by YAGS, and the user may create
additional ones. The properties provided are: CHK_WEAK, CHK_MORPH, CHK_METRIC, CHK_CMPLT,
CHK_MONO and CHK_EPI.

If G has n vertices and f : G → H is a morphism, it is represented as F=[f(1), f(2), ...,
f(n)].

Example
gap> g:=CycleGraph(4);;h:=CompleteBipartiteGraph(2,2);;
gap> PropList:=[CHK_MORPH];;
gap> PropertyMorphism(g,h,PropList);
[1, 3, 1, 3]

This operation reports progress at InfoLevel 3 (see B.24.3 and Section 6.4).
Extensive information about graph morphisms can be found in Chapter 5.

B.16.10 PropertyMorphisms

. PropertyMorphisms(G, H, PropList) (operation)

Returns all morphisms from G to H satisfying the list of properties PropList .
A number of preprogrammed properties are provided by YAGS, and the user may create

additional ones. The properties provided are: CHK_WEAK, CHK_MORPH, CHK_METRIC, CHK_CMPLT,
CHK_MONO and CHK_EPI.

If G has n vertices and f : G → H is a morphism, it is represented as F=[f(1), f(2), ...,
f(n)].

YAGS 124

Example
gap> g:=CycleGraph(4);;h:=CompleteBipartiteGraph(2,2);;
gap> PropList:=[CHK_WEAK,CHK_MONO];;
gap> PropertyMorphisms(g,h,PropList);
[[1, 3, 2, 4], [1, 4, 2, 3], [2, 3, 1, 4], [2, 4, 1, 3],

[3, 1, 4, 2], [3, 2, 4, 1], [4, 1, 3, 2], [4, 2, 3, 1]]

This operation reports progress at InfoLevel 3 (see B.24.3 and Section 6.4).
Extensive information about graph morphisms can be found in Chapter 5.

B.17 Q

B.17.1 QtfyIsSimple

. QtfyIsSimple(G) (attribute)

For internal use. Returns a non-negative integer indicating how far is the graph G from being
a simple graph. The return value of 0 means the graph that the graph is simple.

B.17.2 QuadraticRingGraph

. QuadraticRingGraph(Rng) (operation)

Returns the graph G whose vertices are the elements of Rng such that x is adjacent to y iff
x+z2 =y for some z in Rng .

Example
gap> QuadraticRingGraph(ZmodnZ(8));
Graph(Category := SimpleGraphs, Order := 8, Size :=
12, Adjacencies := [[2, 5, 8], [1, 3, 6], [2, 4, 7],

[3, 5, 8], [1, 4, 6], [2, 5, 7], [3, 6, 8], [1, 4, 7]])

B.17.3 QuotientGraph

. QuotientGraph(G, Part) (operation)

. QuotientGraph(G, L1, L2) (operation)

Returns the quotient graph of graph G given a vertex partition Part , by identifying any two
vertices in the same part. The vertices of the quotient graph are the parts in the partition Part
two of them being adjacent iff any vertex in one part is adjacent to any vertex in the other part.
Singletons may be omitted in Part .

Example
gap> g:=PathGraph(8);;
gap> QuotientGraph(g,[[1,5,8],[2],[3],[4],[6],[7]]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
7, Adjacencies := [[2, 4, 5, 6], [1, 3], [2, 4], [1, 3],

YAGS 125

[1, 6], [1, 5]])
gap> QuotientGraph(g,[[1,5,8]]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
7, Adjacencies := [[2, 4, 5, 6], [1, 3], [2, 4], [1, 3],

[1, 6], [1, 5]])

In its second form, QuotientGraph identifies each vertex in list L1 , with the corresponding
vertex in list L2 . L1 and L2 must have the same length, but any or both of them may have
repetitions.

Example
gap> g:=PathGraph(8);;
gap> QuotientGraph(g,[[1,7],[4,8]]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
7, Adjacencies := [[2, 4, 6], [1, 3], [2, 4], [1, 3, 5],

[4, 6], [1, 5]])
gap> QuotientGraph(g,[1,4],[7,8]);
Graph(Category := SimpleGraphs, Order := 6, Size :=
7, Adjacencies := [[2, 4, 6], [1, 3], [2, 4], [1, 3, 5],

[4, 6], [1, 5]])

B.18 R

B.18.1 Radius

. Radius(G) (attribute)

Returns the minimal eccentricity among the vertices of the graph G .
Example

gap> Radius(PathGraph(5));
2

B.18.2 RandomCirculant

. RandomCirculant(n) (operation)

. RandomCirculant(n, k) (operation)

. RandomCirculant(n, p) (operation)

Returns a circulant on n vertices with its jumps selected randomly. In its third form, each
possible jump has probability p of being selected. In its second form, when k is a positive
integer, exactly k jumps are selected (provided there are at least k possible jumps to select
from). The first form is equivalent to specifying p=1/2. In the ambiguous case when the second
parameter is 1, it is interpreted as the value of k .

Example
gap> RandomCirculant(11,2);
Graph(Category := SimpleGraphs, Order := 11, Size :=

YAGS 126

22, Adjacencies := [[5, 6, 7, 8], [6, 7, 8, 9], [7, 8, 9, 10],
[8, 9, 10, 11], [1, 9, 10, 11], [1, 2, 10, 11],
[1, 2, 3, 11], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6],
[4, 5, 6, 7]])

gap> RandomCirculant(11,2);
Graph(Category := SimpleGraphs, Order := 11, Size :=
22, Adjacencies := [[2, 3, 10, 11], [1, 3, 4, 11],

[1, 2, 4, 5], [2, 3, 5, 6], [3, 4, 6, 7], [4, 5, 7, 8],
[5, 6, 8, 9], [6, 7, 9, 10], [7, 8, 10, 11], [1, 8, 9, 11],
[1, 2, 9, 10]])

gap> RandomCirculant(11,1/2);
Graph(Category := SimpleGraphs, Order := 11, Size :=
44, Adjacencies :=
[[2, 4, 5, 6, 7, 8, 9, 11], [1, 3, 5, 6, 7, 8, 9, 10],

[2, 4, 6, 7, 8, 9, 10, 11], [1, 3, 5, 7, 8, 9, 10, 11],
[1, 2, 4, 6, 8, 9, 10, 11], [1, 2, 3, 5, 7, 9, 10, 11],
[1, 2, 3, 4, 6, 8, 10, 11], [1, 2, 3, 4, 5, 7, 9, 11],
[1, 2, 3, 4, 5, 6, 8, 10], [2, 3, 4, 5, 6, 7, 9, 11],
[1, 3, 4, 5, 6, 7, 8, 10]])

gap> RandomCirculant(11,1/2);
Graph(Category := SimpleGraphs, Order := 11, Size :=
11, Adjacencies := [[5, 8], [6, 9], [7, 10], [8, 11],

[1, 9], [2, 10], [3, 11], [1, 4], [2, 5], [3, 6],
[4, 7]])

gap> RandomCirculant(11,1/2);
Graph(Category := SimpleGraphs, Order := 11, Size :=
33, Adjacencies := [[2, 3, 6, 7, 10, 11], [1, 3, 4, 7, 8, 11],

[1, 2, 4, 5, 8, 9], [2, 3, 5, 6, 9, 10], [3, 4, 6, 7, 10, 11],
[1, 4, 5, 7, 8, 11], [1, 2, 5, 6, 8, 9], [2, 3, 6, 7, 9, 10],
[3, 4, 7, 8, 10, 11], [1, 4, 5, 8, 9, 11],
[1, 2, 5, 6, 9, 10]])

B.18.3 RandomGraph

. RandomGraph(n, p) (function)

. RandomGraph(n) (function)

Returns a random graph of order n taking the rational p ∈ [0,1] as the edge probability.
Example

gap> RandomGraph(5,1/3);
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2, 3, 5], [1, 5], [1, 4], [3], [1, 2]
])

gap> RandomGraph(5,2/3);
Graph(Category := SimpleGraphs, Order := 5, Size :=
7, Adjacencies := [[2, 3], [1, 3, 4, 5], [1, 2, 4, 5],

[2, 3], [2, 3]])
gap> RandomGraph(5,1/2);

YAGS 127

Graph(Category := SimpleGraphs, Order := 5, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 5], [1, 2],

[3]])

If p is omitted, the edge probability is taken to be 1/2.
Example

gap> RandomGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
9, Adjacencies := [[2, 3, 4, 5], [1, 3, 5], [1, 2, 4, 5],

[1, 3, 5], [1, 2, 3, 4]])
gap> RandomGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
5, Adjacencies := [[2], [1, 3, 5], [2, 4], [3, 5], [2, 4]
])

B.18.4 RandomPermutation

. RandomPermutation(n) (operation)

Returns a random permutation of the list [1, 2, ... n].
Example

gap> RandomPermutation(12);
(1,8,5,6,7,3,9,10,2,11,4)

B.18.5 RandomSubset

. RandomSubset(Set) (operation)

. RandomSubset(Set, k) (operation)

. RandomSubset(Set, p) (operation)

Returns a random subset of the set Set . When the positive integer k is provided, the returned
subset has k elements (or fail if Set does not have at least k elements). When the probability p
is provided, each element of Set has probability p of being selected for inclusion in the returned
subset. When k and p are both missing, it is equivalent to specifying p=1/2. In the ambiguous
case when the second parameter is 1, it is interpreted as the value of k .

Example
gap> RandomSubset([1..10],5);
[1, 6, 7, 9, 10]
gap> RandomSubset([1..10],5);
[7, 8, 3, 1, 5]
gap> RandomSubset([1..10],5);
[6, 7, 9, 3, 1]
gap> RandomSubset([1..10],5);
[3, 4, 2, 8, 5]
gap> RandomSubset([1..10],1/2);

YAGS 128

[2, 4, 5, 6, 7, 8, 9, 10]
gap> RandomSubset([1..10],1/2);
[5, 6, 7, 8]
gap> RandomSubset([1..10],1/2);
[3, 6]
gap> RandomSubset([1..10],1/2);
[4, 5, 6, 7, 8, 10]

Even if this operation is intended to be applied to sets, it does not impose this condition on
its operand, and can be applied to lists as well.

Example
gap> RandomSubset([1,3,2,2,3,2,1]);
[2, 1]
gap> RandomSubset([1,3,2,2,3,2,1]);
[3, 2, 2, 3, 1]

B.18.6 RandomlyPermuted

. RandomlyPermuted(Obj) (operation)

Returns a copy of Obj with the order of its elements permuted randomly. Currently, the
operation is implemented for lists and graphs.

Example
gap> RandomlyPermuted([1..9]);
[8, 7, 1, 9, 4, 2, 5, 6, 3]
gap> g:=PathGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [1, 3], [2, 4], [3]])
gap> RandomlyPermuted(g);
Graph(Category := SimpleGraphs, Order := 4, Size :=
3, Adjacencies := [[2, 3], [1], [1, 4], [3]])

B.18.7 RemoveEdges

. RemoveEdges(G, E) (operation)

Returns a new graph created from graph G by removing the edges in list E .
Example

gap> g:=CompleteGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])
gap> RemoveEdges(g,[[1,2]]);
Graph(Category := SimpleGraphs, Order := 4, Size :=
5, Adjacencies := [[3, 4], [3, 4], [1, 2, 4], [1, 2, 3]])
gap> RemoveEdges(g,[[1,2],[3,4]]);

YAGS 129

Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[3, 4], [3, 4], [1, 2], [1, 2]])

B.18.8 RemoveVertices

. RemoveVertices(G, V) (operation)

Returns a new graph created from graph G by removing the vertices in list V .
Example

gap> g:=PathGraph(5);
Graph(Category := SimpleGraphs, Order := 5, Size :=
4, Adjacencies := [[2], [1, 3], [2, 4], [3, 5], [4]])
gap> RemoveVertices(g,[3]);
Graph(Category := SimpleGraphs, Order := 4, Size :=
2, Adjacencies := [[2], [1], [4], [3]])
gap> RemoveVertices(g,[1,3]);
Graph(Category := SimpleGraphs, Order := 3, Size :=
1, Adjacencies := [[], [3], [2]])

B.18.9 RGraph

. RGraph (global variable)

A square with two pendant vertices attached to the same vertex of the square.
Example

gap> RGraph;
Graph(Category := SimpleGraphs, Order := 6, Size :=
6, Adjacencies := [[2], [1, 3, 5, 6], [2, 4], [3, 5],

[2, 4], [2]])

B.18.10 RingGraph

. RingGraph(Rng, Elms) (operation)

Returns the graph G whose vertices are the elements of the ring Rng such that x is adjacent
to y iff x+r=y for some r in Elms .

Example
gap> r:=FiniteField(8);Elements(r);
GF(2^3)
[0*Z(2), Z(2)^0, Z(2^3), Z(2^3)^2, Z(2^3)^3, Z(2^3)^4, Z(2^3)^5,

Z(2^3)^6]
gap> RingGraph(r,[Z(2^3),Z(2^3)^4]);
Graph(Category := SimpleGraphs, Order := 8, Size :=
8, Adjacencies := [[3, 6], [5, 7], [1, 4], [3, 6], [2, 8],

[1, 4], [2, 8], [5, 7]])

YAGS 130

B.19 S

B.19.1 SetCoordinates

. SetCoordinates(G, Coord) (operation)

Sets the coordinates of the vertices of G , which are used to draw G by Draw (B.4.15).
Example

gap> g:=CycleGraph(4);;
gap> Coordinates(g);
fail
gap> SetCoordinates(g,[[-10,-10],[-10,20],[20,-10], [20,20]]);
gap> Coordinates(g);
[[-10, -10], [-10, 20], [20, -10], [20, 20]]

B.19.2 SetDefaultGraphCategory

. SetDefaultGraphCategory(Catgy) (function)

Sets the default graph category to Catgy . The default graph category is used when con-
structing new graphs when no other graph category is indicated. New graphs are always forced
to comply with the TargetGraphCategory, so loops may be removed, and arrows may replaced
by edges or vice versa, depending on the category that the new graph belongs to.

The available graph categories are: SimpleGraphs, OrientedGraphs,
UndirectedGraphs, LooplessGraphs, and Graphs.

Example
gap> SetDefaultGraphCategory(Graphs);
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]);
Graph(Category := Graphs, Order := 3, Size := 4, Adjacencies :=
[[1, 2], [1], [2]])
gap> SetDefaultGraphCategory(LooplessGraphs);
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]);
Graph(Category := LooplessGraphs, Order := 3, Size :=
3, Adjacencies := [[2], [1], [2]])
gap> SetDefaultGraphCategory(UndirectedGraphs);
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]);
Graph(Category := UndirectedGraphs, Order := 3, Size :=
3, Adjacencies := [[1, 2], [1, 3], [2]])
gap> SetDefaultGraphCategory(OrientedGraphs);
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]);
Graph(Category := OrientedGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [], [2]])
gap> SetDefaultGraphCategory(SimpleGraphs);
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])

YAGS 131

B.19.3 SimpleGraphs

. SimpleGraphs(G) (function)

SimpleGraphs is a graph category in YAGS. A graph in this category may contain
edges, but no loops or arrows. This category has two parents: LooplessGraphs and
UndirectedGraphs.

Example
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=Graphs);
Graph(Category := Graphs, Order := 3, Size := 4, Adjacencies :=
[[1, 2], [1], [2]])
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=SimpleGraphs);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])

B.19.4 Size

. Size(G) (attribute)

Returns the number of edges of the graph G . Note that the returned value depends not only
on the structure of the graph, but also on the category to which it belongs.

Example
gap> g1:=CycleGraph(4);
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])
gap> g2:=CopyGraph(g1:GraphCategory:=Graphs);
Graph(Category := Graphs, Order := 4, Size := 8, Adjacencies :=
[[2, 4], [1, 3], [2, 4], [1, 3]])
gap> Size(g1);
4
gap> Size(g2);
8

B.19.5 SnubDisphenoid

. SnubDisphenoid (global variable)

The 1-skeleton of the 84th Johnson solid.
Example

gap> SnubDisphenoid;
Graph(Category := SimpleGraphs, Order := 8, Size :=
18, Adjacencies := [[2, 3, 4, 5, 8], [1, 3, 6, 7, 8],

[1, 2, 4, 6], [1, 3, 5, 6], [1, 4, 6, 7, 8],
[2, 3, 4, 5, 7], [2, 5, 6, 8], [1, 2, 5, 7]])

YAGS 132

B.19.6 SpanningForest

. SpanningForest(G) (operation)

Returns the a maximal spanning forest of G . Since the forest is maximal, it is composed of
a spanning tree for each connected component of G . In particular, this operation actually returns
a spanning tree whenever the graph is connected.

B.19.7 SpanningForestEdges

. SpanningForestEdges(G) (operation)

Returns the edges of a maximal spanning forest of G . Since the forest is maximal, it is
composed of a spanning tree for each connected component of G . In particular, this operation
actually returns the edges of a spanning tree whenever the graph is connected.

B.19.8 SpikyGraph

. SpikyGraph(n) (function)

The spiky graph is constructed as follows: Take a complete graph on n vertices, Kn , and
then, for each the n subsets of Vertices(Kn) of order n-1, add an additional vertex which is
adjacent precisely to this subset of Vertices(Kn).

Example
gap> SpikyGraph(3);
Graph(Category := SimpleGraphs, Order := 6, Size :=
9, Adjacencies := [[2, 3, 4, 5], [1, 3, 4, 6], [1, 2, 5, 6],

[1, 2], [1, 3], [2, 3]])

B.19.9 SunGraph

. SunGraph(n) (function)

Returns the n -Sun: A complete graph on n vertices, Kn , with a corona made with a zigzag-
ging 2n -cycle glued to a n -cycle of the Kn .

Example
gap> SunGraph(3);
Graph(Category := SimpleGraphs, Order := 6, Size :=
9, Adjacencies := [[2, 6], [1, 3, 4, 6], [2, 4],

[2, 3, 5, 6], [4, 6], [1, 2, 4, 5]])
gap> SunGraph(4);
Graph(Category := SimpleGraphs, Order := 8, Size :=
14, Adjacencies := [[2, 8], [1, 3, 4, 6, 8], [2, 4],

[2, 3, 5, 6, 8], [4, 6], [2, 4, 5, 7, 8], [6, 8],
[1, 2, 4, 6, 7]])

YAGS 133

B.19.10 Suspension

. Suspension(G) (operation)

Returns the suspension of graph G . The suspension of G is the graph obtained from G by
adding two new vertices which are adjacent to every vertex of G but not to each other. The new
vertices are the first ones in the new graph.

Example
gap> Suspension(CycleGraph(4));
Graph(Category := SimpleGraphs, Order := 6, Size :=
12, Adjacencies := [[3, 4, 5, 6], [3, 4, 5, 6], [1, 2, 4, 6],

[1, 2, 3, 5], [1, 2, 4, 6], [1, 2, 3, 5]])

B.20 T

B.20.1 TargetGraphCategory

. TargetGraphCategory([G, ...]) (function)

For internal use. Returns the graph category indicated in the options stack if any, oth-
erwise if the list of graphs provided is not empty, returns the minimal common graph category
for the graphs in the list, else returns the default graph category. The partial order (by inclusion)
among graph categories is as follows:

UndirectedGraphs

Graphs

SimpleGraphs

LooplessGraphs

OrientedGraphs

This function is internally called by all graph constructing operations in YAGS to decide
the graph category that the newly constructed graph is going to belong. New graphs are always
forced to comply with the TargetGraphCategory, so loops may be removed, and arrows may
replaced by edges or vice versa, depending on the category that the new graph belongs to.

The options stack is a mechanism provided by GAP to pass implicit parameters and is
used by TargetGraphCategory so that the user may indicate the graph category she/he wants
for the new graph.

Example
gap> SetDefaultGraphCategory(SimpleGraphs);
gap> g1:=CompleteGraph(2);
Graph(Category := SimpleGraphs, Order := 2, Size :=
1, Adjacencies := [[2], [1]])
gap> g2:=CompleteGraph(2:GraphCategory:=OrientedGraphs);

YAGS 134

Graph(Category := OrientedGraphs, Order := 2, Size :=
1, Adjacencies := [[2], []])
gap> DisjointUnion(g1,g2);
Graph(Category := LooplessGraphs, Order := 4, Size :=
3, Adjacencies := [[2], [1], [4], []])
gap> DisjointUnion(g1,g2:GraphCategory:=UndirectedGraphs);
Graph(Category := UndirectedGraphs, Order := 4, Size :=
2, Adjacencies := [[2], [1], [4], [3]])

In the previous examples, TargetGraphCategory was called internally exactly once for
each new graph constructed with the following parameters:

Example
gap> TargetGraphCategory();
<Category "SimpleGraphs">
gap> TargetGraphCategory(:GraphCategory:=OrientedGraphs);
<Category "OrientedGraphs">
gap> TargetGraphCategory([g1,g2]);
<Category "LooplessGraphs">
gap> TargetGraphCategory([g1,g2]:GraphCategory:=UndirectedGraphs);
<Category "UndirectedGraphs">

B.20.2 Tetrahedron

. Tetrahedron (global variable)

The 1-skeleton of Plato’s tetrahedron.
Example

gap> Tetrahedron;
Graph(Category := SimpleGraphs, Order := 4, Size :=
6, Adjacencies := [[2, 3, 4], [1, 3, 4], [1, 2, 4],

[1, 2, 3]])

B.20.3 TimeInSeconds

. TimeInSeconds() (operation)

Returns the time in seconds since 1970-01-01 00:00:00 UTC as an integer. This is useful
to measure execution time. It can also be used to impose time constraints on the execution of
algorithms. Note however that the time reported is the wall time, not necessarily the time spent
in the process you intend to measure.

Example
gap> TimeInSeconds();
1415551598
gap> K:=CliqueGraph;;NumCli:=NumberOfCliques;;I:=Icosahedron;;
gap> t1:=TimeInSeconds();NumCli(K(K(K(K(I)))));TimeInSeconds()-t1;
1415551608

YAGS 135

44644
103

Currently, this operation does not work on MS Windows.

B.20.4 TimesProduct

. TimesProduct(G, H) (operation)

Returns the times product, G×H , of two graphs G and H (also known as the tensor product).
The times product is computed as follows:
For each pair of vertices x ∈ G ,y ∈ H we create a vertex (x,y). Given two such vertices (x,y)

and (x′,y′) they are adjacent iff x∼ x′ and y∼ y′.
Example

gap> g:=PathGraph(3);h:=CycleGraph(4);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
Graph(Category := SimpleGraphs, Order := 4, Size :=
4, Adjacencies := [[2, 4], [1, 3], [2, 4], [1, 3]])
gap> gh:=TimesProduct(g,h);
Graph(Category := SimpleGraphs, Order := 12, Size :=
16, Adjacencies := [[6, 8], [5, 7], [6, 8], [5, 7],

[2, 4, 10, 12], [1, 3, 9, 11], [2, 4, 10, 12],
[1, 3, 9, 11], [6, 8], [5, 7], [6, 8], [5, 7]])

gap> VertexNames(gh);
[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2],

[2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4]]

B.20.5 TorusGraph

. TorusGraph(n, m) (function)

Returns (the underlying graph of) a triangulation of the torus on nm vertices. This graph
is constructed using {1,2, . . . ,n}×{1,2, . . . ,m} as the vertex set; two of them being adjacent
if their difference belongs to {(1,0),(0,1),(1,1)} module Zn ×Zm . Hence, in the category of
simple graphs, TorusGraph is a 6-regular graph when n ,m ≥ 3.

Example
TorusGraph(4,4);
Graph(Category := SimpleGraphs, Order := 16, Size := 48, Adjacencies :=
[[2, 4, 5, 6, 13, 16], [1, 3, 6, 7, 13, 14], [2, 4, 7, 8, 14, 15],

[1, 3, 5, 8, 15, 16], [1, 4, 6, 8, 9, 10], [1, 2, 5, 7, 10, 11],
[2, 3, 6, 8, 11, 12], [3, 4, 5, 7, 9, 12], [5, 8, 10, 12, 13, 14],
[5, 6, 9, 11, 14, 15], [6, 7, 10, 12, 15, 16], [7, 8, 9, 11, 13, 16],
[1, 2, 9, 12, 14, 16], [2, 3, 9, 10, 13, 15], [3, 4, 10, 11, 14, 16],
[1, 4, 11, 12, 13, 15]])

YAGS 136

When n ,m ≥ 4, TorusGraph(n, m) is actually a Whitney triangulation: the (maximal)
cliques of the graph are exactly the triangles of the triangulation. The clique behavior of these
graphs were extensively studied in [13]. However, this operation constructs the described graph
for all n ,m ≥ 1.

Example
gap> TorusGraph(2,4);
Graph(Category := SimpleGraphs, Order := 8, Size :=
20, Adjacencies := [[2, 4, 5, 6, 8], [1, 3, 5, 6, 7],

[2, 4, 6, 7, 8], [1, 3, 5, 7, 8], [1, 2, 4, 6, 8],
[1, 2, 3, 5, 7], [2, 3, 4, 6, 8], [1, 3, 4, 5, 7]])

gap> TorusGraph(2,3);
Graph(Category := SimpleGraphs, Order := 6, Size :=
15, Adjacencies := [[2, 3, 4, 5, 6], [1, 3, 4, 5, 6],

[1, 2, 4, 5, 6], [1, 2, 3, 5, 6], [1, 2, 3, 4, 6],
[1, 2, 3, 4, 5]])

Note that in these cases, TorusGraph(n, m) is not 6-regular nor a Whitney triangula-
tion.

B.20.6 TreeGraph

. TreeGraph(arity, depth) (operation)

. TreeGraph(ArityList) (operation)

Returns a tree, a connected cycle-free graph. In its second form, the vertices at depth k (the
root vertex has depth 1 here) have ArityList [k] children. In its first form, all vertices, but the
leaves, have arity children and the depth of the leaves is depth+1.

Example
gap> TreeGraph(2,3);
Graph(Category := SimpleGraphs, Order := 15, Size :=
14, Adjacencies := [[2, 3], [1, 4, 5], [1, 6, 7], [2, 8, 9],

[2, 10, 11], [3, 12, 13], [3, 14, 15], [4], [4], [5],
[5], [6], [6], [7], [7]])

gap> TreeGraph([3,2,2]);
Graph(Category := SimpleGraphs, Order := 22, Size :=
21, Adjacencies := [[2, 3, 4], [1, 5, 6], [1, 7, 8],

[1, 9, 10], [2, 11, 12], [2, 13, 14], [3, 15, 16],
[3, 17, 18], [4, 19, 20], [4, 21, 22], [5], [5], [6],
[6], [7], [7], [8], [8], [9], [9], [10], [10]])

B.20.7 TrivialGraph

. TrivialGraph (global variable)

The one vertex graph.

YAGS 137

Example
gap> TrivialGraph;
Graph(Category := SimpleGraphs, Order := 1, Size :=
0, Adjacencies := [[]])

B.21 U

B.21.1 UFFind

. UFFind(UFS, x) (function)

For internal use. Implements the find operation on the union-find structure.

B.21.2 UFUnite

. UFUnite(UFS, x, y) (function)

For internal use. Implements the unite operation on the union-find structure.

B.21.3 UndirectedGraphs

. UndirectedGraphs(G) (function)

UndirectedGraphs is a graph category in YAGS. A graph in this category may contain
edges and loops, but no arrows. The parent of this category is Graphs.

Example
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=Graphs);
Graph(Category := Graphs, Order := 3, Size := 4, Adjacencies :=
[[1, 2], [1], [2]])
gap> GraphByWalks([1,1],[1,2],[2,1],[3,2]:GraphCategory:=UndirectedGraphs);
Graph(Category := UndirectedGraphs, Order := 3, Size :=
3, Adjacencies := [[1, 2], [1, 3], [2]])

B.21.4 UnitsRingGraph

. UnitsRingGraph(Rng) (operation)

Returns the graph G whose vertices are the elements of Rng such that x is adjacent to y iff
x+z=y for some unit z of Rng .

Example
gap> UnitsRingGraph(ZmodnZ(8));
Graph(Category := SimpleGraphs, Order := 8, Size :=
16, Adjacencies := [[2, 4, 6, 8], [1, 3, 5, 7], [2, 4, 6, 8],

[1, 3, 5, 7], [2, 4, 6, 8], [1, 3, 5, 7], [2, 4, 6, 8],
[1, 3, 5, 7]])

YAGS 138

B.22 V

B.22.1 VertexDegree

. VertexDegree(G, x) (operation)

Returns the degree of vertex x in Graph G .
Example

gap> g:=PathGraph(3);
Graph(Category := SimpleGraphs, Order := 3, Size :=
2, Adjacencies := [[2], [1, 3], [2]])
gap> VertexDegree(g,1);
1
gap> VertexDegree(g,2);
2

B.22.2 VertexDegrees

. VertexDegrees(G) (operation)

Returns the list of degrees of the vertices in graph G .
Example

gap> g:=GemGraph;
Graph(Category := SimpleGraphs, Order := 5, Size :=
7, Adjacencies := [[2, 3, 4, 5], [1, 3], [1, 2, 4],

[1, 3, 5], [1, 4]])
gap> VertexDegrees(g);
[4, 2, 3, 3, 2]

B.22.3 VertexNames

. VertexNames(G) (attribute)

Return the list of names of the vertices of G . The vertices of a graph in YAGS are always
{1,2, . . . ,Order(G)}, but depending on how the graph was constructed, its vertices may have
also some names, that help us identify the origin of the vertices. YAGS will always try to store
meaningful names for the vertices. For example, in the case of the LineGraph, the vertex names
of the new graph are the edges of the old graph.

Example
gap> g:=LineGraph(DiamondGraph);
Graph(Category := SimpleGraphs, Order := 5, Size :=
8, Adjacencies := [[2, 3, 4], [1, 3, 4, 5], [1, 2, 5],

[1, 2, 5], [2, 3, 4]])
gap> VertexNames(g);
[[1, 2], [1, 3], [1, 4], [2, 3], [3, 4]]
gap> Edges(DiamondGraph);
[[1, 2], [1, 3], [1, 4], [2, 3], [3, 4]]

YAGS 139

B.22.4 Vertices

. Vertices(G) (operation)

Returns the list [1..Order(G)].
Example

gap> Vertices(Icosahedron);
[1 .. 12]

B.23 W

B.23.1 WheelGraph

. WheelGraph(n) (operation)

. WheelGraph(n, r) (operation)

In its first form WheelGraph returns the wheel graph on n+1 vertices. This is the cone of a
cycle: a central vertex adjacent to all the vertices of an n -cycle.

Example
gap> WheelGraph(5);
Graph(Category := SimpleGraphs, Order := 6, Size :=
10, Adjacencies := [[2, 3, 4, 5, 6], [1, 3, 6], [1, 2, 4],

[1, 3, 5], [1, 4, 6], [1, 2, 5]])

In its second form, WheelGraph returns returns the wheel graph, but adding r-1 layers, each
layer is a new n -cycle joined to the previous layer by a zigzagging 2n -cycle. This graph is a
triangulation of the disk.

Example
gap> WheelGraph(5,2);
Graph(Category := SimpleGraphs, Order := 11, Size :=
25, Adjacencies := [[2, 3, 4, 5, 6], [1, 3, 6, 7, 8],

[1, 2, 4, 8, 9], [1, 3, 5, 9, 10], [1, 4, 6, 10, 11],
[1, 2, 5, 7, 11], [2, 6, 8, 11], [2, 3, 7, 9],
[3, 4, 8, 10], [4, 5, 9, 11], [5, 6, 7, 10]])

gap> WheelGraph(5,3);
Graph(Category := SimpleGraphs, Order := 16, Size :=
40, Adjacencies := [[2, 3, 4, 5, 6], [1, 3, 6, 7, 8],

[1, 2, 4, 8, 9], [1, 3, 5, 9, 10], [1, 4, 6, 10, 11],
[1, 2, 5, 7, 11], [2, 6, 8, 11, 12, 13], [2, 3, 7, 9, 13, 14],
[3, 4, 8, 10, 14, 15], [4, 5, 9, 11, 15, 16],
[5, 6, 7, 10, 12, 16], [7, 11, 13, 16], [7, 8, 12, 14],
[8, 9, 13, 15], [9, 10, 14, 16], [10, 11, 12, 15]])

YAGS 140

B.24 Y

B.24.1 YAGSExec

. YAGSExec(ProgName, InString) (operation)

For internal use. Calls external program ProgName located in directory YAGS-DIR/bin/
feeding it with InString as input and returning the output of the external program as a string.
fail is returned if the program could not be located.

Example
gap> YAGSExec("time","");
"1415551127\n"
gap> YAGSExec("nauty","l=0$=1dacn=5 g1,2,3. xbzq");
"(4,5)\n(2,3)\n[2,3,4,5,1]\n[\"cb0c\",\"484f264\",\"b0e19f1\"]\n"

This operation have not been tested on MS Windows.

B.24.2 YAGSInfo

. YAGSInfo (global variable)

A global record where much YAGS-related information is stored. This is intended for inter-
nal use, and much of this information is undocumented, but some of the data stored here could
possibly be useful for advanced users.

However, storing user information in this record and/or changing the values of the stored
information is discouraged and may produce unpredictable results and an unstable system.

Example
gap> YAGSInfo;
rec(Arch := 1, DataDirectory := "/opt/gap4r8/pkg/yags/data",

Directory := "/opt/gap4r8/pkg/yags",
Draw :=

rec(opts := [],
prog := "/opt/gap4r8/pkg/yags/bin/draw/application.linux64/draw"),

InfoClass := YAGSInfoClass, InfoOutput := "*stdout*", Version := "0.0.4",
graph6 := rec(BinListToNum := function(L) ... end,

BinListToNumList := function(L) ... end,
HararyList := [[1, 0, 1], [2, 0, 1], [2, 1, 1],

[3, 0, 1], [3, 1, 1], [3, 2, 1], [3, 3, 1],
[4, 0, 1], [4, 1, 1], [4, 2, 1], [4, 3, 3],
[4, 2, 2], [4, 3, 1], [4, 3, 2], [4, 4, 1],

--- many more lines here ---

[6, 13, 1], [6, 11, 7], [6, 11, 9], [6, 11, 8],
[6, 12, 4], [6, 12, 5], [6, 13, 2], [6, 14, 1],
[6, 15, 1]], McKayN := function(n) ... end,

McKayR := function(L) ... end,

YAGS 141

NumListToString := function(L) ... end,
NumToBinList := function(n) ... end,
PadLeftnSplitList6 := function(L) ... end,
PadRightnSplitList6 := function(L) ... end,
StringToBinList := function(Str) ... end))

B.24.3 YAGSInfo.InfoClass

. YAGSInfo.InfoClass (global variable)

YAGS uses the Reference: InfoLevel mechanism in some algorithms for progress reporting.
This is useful in algorithms that may take a lot of time to finish, so the user is informed about
how much work is already done and how much work remains to be done; this way, the user can
decide whether to wait for the response or not.

Enabling and disabling progress reporting is done by changing the InfoLevel
of YAGSInfo.InfoClass to the appropriate level. The default InfoLevel for
YAGSInfo.InfoClass is 0, and some of YAGS algorithms report at InfoLevel 1, and oth-
ers at InfoLevel 3.

Example
gap> SetInfoLevel(YAGSInfo.InfoClass,3);
gap> FullMonoMorphisms(PathGraph(3),CycleGraph(3));
#I []
#I [1]
#I [1, 2]
#I [1, 3]
#I [2]
#I [2, 1]
#I [2, 3]
#I [3]
#I [3, 1]
#I [3, 2]
[]
gap> SetInfoLevel(YAGSInfo.InfoClass,0);
gap> FullMonoMorphisms(PathGraph(3),CycleGraph(3));
[]

The algorithms that report progress at InfoLevel 1 are ParedGraph (B.16.4) and Cliques
(B.3.7), and also the algorithms that use those, namely: CliqueGraph (B.3.5), CliqueNumber
(B.3.6), CompletelyParedGraph (B.3.12), IsCliqueGated (B.9.9) and NumberOfCliques
(B.14.3).

The algorithms that report at InfoLevel 3 are Backtrack (B.2.1) and the algorithms
that use that one, namely: BacktrackBag (B.2.2), CompletesOfGivenOrder (B.3.14),
Orientations (B.15.4) and all the morphism-related operations in Chapter 5. The meaning
of the progress strings reported in all these functions are described in Section 6.4.

The output of the progress info may be redirected to a file or character device by setting the
variable YAGSInfo.InfoOutput (B.24.4) accordingly.

YAGS 142

B.24.4 YAGSInfo.InfoOutput

. YAGSInfo.InfoOutput (global variable)

The output of the progress info reported by some algorithms (see YAGSInfo.InfoClass
(B.24.3)) may be redirected to a file by setting the variable YAGSInfo.InfoOutput accordingly.
The default value of YAGSInfo.InfoOutput:="*stdout*" means the console; but setting the
name of a file as the value of YAGSInfo.InfoOutput sends the output to that file. In Unix-like
systems, we can also use the name of a character device (like "/dev/null", "/dev/tty" or
"/dev/pts/1") to redirect the progress info output to that device.

B.24.5 YAGSPositionsTrueBlist

. YAGSPositionsTrueBlist(Blist) (function)

For internal use. The same as ListBlist([1..Length(Blist)],Blist);
Example

gap> YAGSPositionsTrueBlist([false, true, true, false, true]);
[2, 3, 5]

Appendix C

Change Log

C.1 Changes from version 0.0.4 to version 0.0.5

• Necessary changes for YAGS to work with GAP 4.10.0.

• Much faster algorithm to compute the AutomorphismGroup (B.1.8) of a graph.

C.2 Changes from version 0.0.3 to version 0.0.4

• YAGS now knows how to draw arrow for directed graphs.

• Minor changes to ensure compatibility with GAP versions 4.9.1, 4.9.2 and 4.10dev. Af-
fected attributes, operations and functions: YAGSDiameter(Graph), Diameter (B.4.3)
and YAGSPositionsTrueBlist (B.24.5).

C.3 Changes from version 0.0.2 to version 0.0.3

• PackageInfo.g updated to fulfill GAP’s ValidatePackageInfo() requirements.

• The following graph constructing operations now report an error when attempting to
construct an empty graph: InducedSubgraph (B.9.4), GraphByAdjacencies (B.7.6),
GraphByAdjMatrix (B.7.7), GraphByCompleteCover (B.7.8), GraphByEdges (B.7.9),
GraphByRelation (B.7.10) and GraphByWalks (B.7.11).

• Link (B.12.2) now returns fail when the given vertex has degree 0.

143

References

[1] L. Alcón, L. Faria, C. de Figueiredo and M. Gutierrez. The complexity of clique graph
recognition. Theoret. Comput. Sci. 410 (2009) 2072 – 2083. 21

[2] B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, second edition, 2001. 20

[3] C.F. Bornstein and J.L. Szwarcfiter. On clique convergent graphs. Graphs Combin. 11
(1995) 213–220. 24, 72

[4] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph–algorithm 457. Com-
munications of the ACM 16 (1973) 575–577. 19, 76

[5] F.F. Dragan. Centers of graphs and the Helly property (in Russian). PhD thesis, Moldava
State University, Chisinǎu, Moldava, 1989. 107

[6] F. Escalante. Über iterierte Clique-Graphen. Abh. Math. Sem. Univ. Hamburg 39 (1973)
59–68. 25, 76

[7] M.E. Frías-Armenta, V. Neumann-Lara and M.A. Pizaña. Dismantlings and iterated clique
graphs. Discrete Math. 282 (2004) 263–265. 26, 76

[8] M. Frías-Armenta, F. Larrión, V. Neumann-Lara and M. Pizaña. Edge contraction and
edge removal on iterated clique graphs. Discrete Applied Mathematics 161 (2013) 1427 –
1439. 76

[9] J. Hagauer and S. Klavzar. Clique-gated graphs. Discrete Mathematics 161 (1996) 143–
149. 107

[10] F. Harary. Graph theory. Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park,
Calif.-London, 1969. 102

[11] M. Kahle. Topology of random clique complexes. Discrete Mathematics 309 (2009) 1658
– 1671. 28

[12] F. Larrión and V. Neumann-Lara. A family of clique divergent graphs with linear growth.
Graphs Combin. 13 (1997) 263–266. 76

144

YAGS 145

[13] F. Larrión and V. Neumann-Lara. Clique divergent graphs with unbounded sequence of
diameters. Discrete Math. 197/198 (1999) 491–501. 136

[14] F. Larrión and V. Neumann-Lara. On clique-divergent graphs with linear growth. Discrete
Math. 245 (2002) 139–153. 76

[15] F. Larrión, V. Neumann-Lara and M.A. Pizaña. Whitney triangulations, local girth and
iterated clique graphs. Discrete Math. 258 (2002) 123–135. 107, 111

[16] F. Larrión, V. Neumann-Lara and M.A. Pizaña. Clique divergent clockwork graphs and
partial orders. Discrete Appl. Math. 141 (2004) 195–207. 25, 76

[17] F. Larrión, V. Neumann-Lara and M.A. Pizaña. Graph relations, clique divergence and
surface triangulations. J. Graph Theory 51 (2006) 110–122. 27, 28, 76

[18] F. Larrión, V. Neumann-Lara and M.A. Pizaña. On expansive graphs. European J. Combin.
30 (2009) 372–379. 28

[19] F. Larrión, M.A. Pizaña and R. Villarroel-Flores. Random graphs, retractions and clique
graphs. Electronic Notes on Discrete Mathematics 30 (2008) 285–290. 28

[20] F. Larrión, M.A. Pizaña and R. Villarroel-Flores. The clique behavior of circulants with
three small jumps. Ars Combinatoria 113A (2014) 147–160. 21

[21] J.W. Moon and L. Moser. On cliques in graphs. Israel J. Math. 3 (1965) 23–28. 21

[22] V. Neumann-Lara. On clique-divergent graphs. In Problèmes combinatoires et théorie
des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq.
Internat. CNRS, pages 313–315. CNRS, Paris, 1978. 28

[23] M.A. Pizaña. Distances and diameters on iterated clique graphs. Discrete Appl. Math.
141 (2004) 255–161. 24, 71, 72

[24] E. Prisner. Graph dynamics. Longman, Harlow, 1995. 21

[25] M. Requardt. (Quantum) spacetime as a statistical geometry of lumps in random networks.
Classical Quantum Gravity 17 (2000) 2029–2057. 21

[26] M. Requardt. Space-time as an order-parameter manifold in random networks and the
emergence of physical points. In Quantum theory and symmetries (Goslar, 1999), pages
555–561. World Sci. Publ., River Edge, NJ, 2000. 21

[27] M. Requardt. A geometric renormalization group in discrete quantum space-time. J. Math.
Phys. 44 (2003) 5588–5615. 21

[28] J.L. Szwarcfiter. A survey on clique graphs. In B.A. Reed and C. Linhares-Sales,
editors, Recent advances in algorithms and combinatorics, volume 11 of CMS Books
Math./Ouvrages Math. SMC, pages 109–136. Springer, New York, 2003. 21

[29] J.L. Szwarcfiter. Recognizing clique-Helly graphs. Ars Combin. 45 (1997) 29–32. 107

Index

AddEdges, 67
AddVerticesByAdjacencies, 67
Adjacencies, 68
Adjacency, 68
adjacency list, 68
adjacency lists, 68
adjacency matrix, 68
AdjMatrix, 68
AGraph, 69
AntennaGraph, 69
arrows, 29
AutGroupGraph, 69
AutomorphismGroup, 69
automorphisms

group of, 69

Backtrack, 69
BacktrackBag, 71
Basement, 71
basement, 23, 71
BiMorphism, 37
BiMorphisms, 37
BoundaryVertices, 72
box product, 72
BoxProduct, 72
boxtimes product, 73
BoxTimesProduct, 73
Bron-Kerbosch algorithm, 19, 76
BullGraph, 73

CayleyGraph, 74
ChairGraph, 74
CHK_CMPLT, 39
CHK_EPI, 39
CHK_METRIC, 39
CHK_MONO, 39

CHK_MORPH, 39
CHK_WEAK, 39
Circulant, 74
circulant

random, 125
ClawGraph, 75
clique, 19, 76
clique behavior, 25
clique convergent, 25
clique divergent, 25
clique graph, 19, 75
clique number, 20, 75
clique of cliques, 24
clique-Helly, 25, 107

Dragan-Szwarcfiter characterization, 107
CliqueGraph, 75
CliqueNumber, 75
Cliques, 76
cliques

number of, 20
ClockworkGraph, 76
coloring, 42

proper, 44
ComplementGraph, 78
CompleteBipartiteGraph, 78
CompleteEpiMorphism, 37
CompleteEpiMorphisms, 37
CompleteEpiWeakMorphism, 37
CompleteEpiWeakMorphisms, 37
CompleteGraph, 79
CompletelyParedGraph, 79
CompleteMorphism, 37
CompleteMorphisms, 37
CompleteMultipartiteGraph, 79
CompletesOfGivenOrder, 80

146

YAGS 147

CompleteWeakMorphism, 37
CompleteWeakMorphisms, 37
Composition, 80
Cone, 80
ConnectedComponents, 81
ConnectedGraphsOfGivenOrder, 81
Coordinates, 82
CopyGraph, 82
Cube, 83
CubeGraph, 83
CycleGraph, 83
CylinderGraph, 84

DartGraph, 84
DeclareQtfyProperty, 84
DefaultGraphCategory, 30
degree

of a vertex, 138
derangements, 70, 71
Diameter, 85
DiamondGraph, 85
digraphs, 31
DiscreteGraph, 86
DisjointUnion, 86
Distance, 86
DistanceGraph, 87
DistanceMatrix, 87
Distances, 86
DistanceSet, 88
Dodecahedron, 88
dominated vertices, 25, 79, 121
DominatedVertices, 88
DominoGraph, 89
Draw, 89
DumpObject, 90

EasyExec, 90
Eccentricity, 91
Edges, 91
edges, 29
EpiMetricMorphism, 37
EpiMetricMorphisms, 37
EpiMorphism, 37
EpiMorphisms, 37

EpiWeakMorphism, 37
EpiWeakMorphisms, 37
EquivalenceRepresentatives, 92

FanGraph, 92
FishGraph, 92
forest

spanning, 132
FullBiMorphism, 37
FullBiMorphisms, 37
FullEpiMorphism, 37
FullEpiMorphisms, 37
FullEpiWeakMorphism, 37
FullEpiWeakMorphisms, 37
FullMonoMorphism, 34, 37
FullMonoMorphisms, 34, 37
FullMorphism, 37
FullMorphisms, 37
FullWeakMorphism, 37
FullWeakMorphisms, 37

GAP’s installation directory, 10
GAP-DIR, 10
GemGraph, 93
Girth, 93
Graph, 93
graph

A, 69
antenna, 69
automorphism group of a, 69
bull, 73
Cayley’s, 74
chair, 74
claw, 75
clique, 75
clockwork, 76
complement, 78
complete, 79
complete bipartite, 79
complete multipartite, 79
completely pared, 79
convert from graph6 format, 96
copying, 82
cube, 83

YAGS 148

cycle, 83
cylinder, 84
dart, 84
diamond, 85
discrete, 86
distance, 87
domino, 89
fan, 92
fish, 92
gem, 93
group, 102
house, 103
importing from graph6 format, 104
intersection, 106
Johnson, 113
kite, 114
line, 114
locally constant, 109
locally H, 110
octahedral, 118
parachute, 121
parapluie, 121
pared, 121
path, 122
paw, 122
Petersen’s, 122
power, 123
QuadraticRing, 124
quotient, 124
R, 129
random, 126
ring, 129
spiky, 132
sun, 132
torus, 135
tree, 136
trivial, 136
UnitsRing, 137
wheel, 139

graph categories, 29
graph morphisms, 34
Graph6ToGraph, 96
GraphAttributeStatistics, 94

GraphByAdjacencies, 97
GraphByAdjMatrix, 97
GraphByCompleteCover, 97
GraphByEdges, 98
GraphByRelation, 98
GraphByWalks, 99
GraphCategory, 99
Graphs, 100
Graphs, 29
graphs, 100

isomorphic, 109
loopless, 115
oriented, 119
simple, 131
undirected, 137

GraphsOfGivenOrder, 100
GraphSum, 101
GraphToRaw, 101
GraphUpdateFromRaw, 102
GroupGraph, 102

HararyToMcKay, 102
Helly property, 107
homomorphisms, 34
HouseGraph, 103
hypercube, 83

Icosahedron, 104
immutable graphs, 19
ImportGraph6, 104
in, 105
InducedSubgraph, 105
InfoClass, 141
InfoLevel, 141
InNeigh, 106
InteriorVertices, 106
IntersectionGraph, 106
Is2Regular, 84
IsBoolean, 106
IsCliqueGated, 107
IsCliqueHelly, 107
IsCompactSurface, 107
IsComplete, 108
IsCompleteGraph, 108

YAGS 149

IsDiamondFree, 108
IsEdge, 109
IsInducedSubgraph, 36
IsIsomorphicGraph, 109
IsKColorable, 36
IsLocallyConstant, 109
IsLocallyH, 110
IsLoopless, 110
IsoMorphism, 110
isomorphism, 38
IsoMorphisms, 111
IsOriented, 111
IsSimple, 111
IsSurface, 111
IsTournament, 112
IsTransitiveTournament, 112
IsUndirected, 113
Iterated clique graphs, 23

Johnson graph, 113
JohnsonGraph, 113
Join, 113

K(G), 75
KiteGraph, 114

LineGraph, 114
Link, 114
Links, 115
locally constant, 109
locally H, 110
LooplessGraphs, 115
LooplessGraphs, 29
loops, 29

MaxDegree, 115
McKayToHarary, 102
MetricMorphism, 37
MetricMorphisms, 37
MinDegree, 116
modifying graphs, 14
MonoMorphism, 37
MonoMorphisms, 37
Morphism, 36, 37
Morphisms, 36, 37

morphisms, 34
morphisms of graphs, 34
mutable graphs, 19

necktie, 24
next morphism, 35
NextBiMorphism, 37
NextCompleteEpiMorphism, 37
NextCompleteEpiWeakMorphism, 37
NextCompleteMorphism, 37
NextCompleteWeakMorphism, 37
NextEpiMetricMorphism, 37
NextEpiMorphism, 37
NextEpiWeakMorphism, 37
NextFullBiMorphism, 37
NextFullEpiMorphism, 37
NextFullEpiWeakMorphism, 37
NextFullMonoMorphism, 34, 37
NextFullMorphism, 37
NextFullWeakMorphism, 37
NextIsoMorphism, 116
NextMetricMorphism, 37
NextMonoMorphism, 37
NextMorphism, 36, 37
NextPropertyMorphism, 116
NextWeakMorphism, 37
number of cliques, 20
NumberOfCliques, 117
NumberOfConnectedComponents, 118

OctahedralGraph, 118
Octahedron, 118
ω(G), 20, 75
options stack, 32
Order, 119
Orientations, 119
OrientedGraphs, 119
OrientedGraphs, 29
OutNeigh, 120

Paley tournament, 120
PaleyTournament, 120
ParachuteGraph, 121
ParapluieGraph, 121

YAGS 150

ParedGraph, 121
partial morphism, 35
PathGraph, 122
PawGraph, 122
PetersenGraph, 122
PowerGraph, 122
predefined property-checking functions, 39
product of graphs

box, 72
boxtimes, 73
Cartesian, 72
strong, 73
tensor, 135
times, 135

progress reporting, 141
proper coloring, 44
property-checking functions, 39

predefined, 39
user-defined, 40

PropertyMorphism, 123
PropertyMorphisms, 123

QtfyIsSimple, 124
QuadraticRingGraph, 124
QuotientGraph, 124

Radius, 125
RandomCirculant, 125
RandomGraph, 126
RandomlyPermuted, 128
RandomPermutation, 127
RandomSubset, 127
reachable vertices, 81
RemoveEdges, 128
RemoveVertices, 129
RGraph, 129
RingGraph, 129

searching in combinatorial spaces, 42
SetCoordinates, 130
SetDefaultGraphCategory, 130
SetDefaultGraphCategory, 30
SimpleGraphs, 131
SimpleGraphs, 29

Size, 131
SnubDisphenoid, 131
SpanningForest, 132
SpanningForestEdges, 132
SpikyGraph, 132
star, 24

of a vertex, 24
star morphism, 24
strong product, 31
subgraph

induced, 105
SunGraph, 132
Suspension, 133

TargetGraphCategory, 133
Tetrahedron, 134
TimeInSeconds, 134
times product, 135
TimesProduct, 135
TorusGraph, 135
tournament, 112

Paley, 120
transitive, 112

transitive tournament, 112
tree, 136

spanning, 132
TreeGraph, 136
triangulation

Whitney, 107, 111, 136
TrivialGraph, 136

UFFind, 137
UFUnite, 137
UndirectedGraphs, 137
UndirectedGraphs, 29
union-find structure, 137
UnitsRingGraph, 137
user-defined property-checking functions, 40

VertexDegree, 138
VertexDegrees, 138
VertexNames, 138
Vertices, 139
vertices

YAGS 151

dominated, 88
twin, 88

WeakMorphism, 37
WeakMorphisms, 37
WheelGraph, 139
Whitney triangulation, 107, 111, 136
working directory, 11
WORKING-DIR, 11

YAGS’s installation directory, 10
YAGS-DIR, 10
YAGSExec, 140
YAGSInfo, 140
YAGSInfo.InfoClass, 141
YAGSInfo.InfoOutput, 142
YAGSInfoClass, 141
YAGSPositionsTrueBlist, 142
Yttrium Aluminium GarnetS, 6, 9

Zykov sum, 113

	Preface
	Welcome to YAGS
	Citing YAGS
	Authors
	Contributors
	More Information

	Getting Started
	What is YAGS?
	Installing YAGS
	A Gentle Tutorial
	Cheatsheet

	Cliques and Clique Graphs
	Cliques and Clique Number
	Clique Graphs
	Basements and Iterated Clique Graphs
	Stars and Neckties
	Clique Behavior

	Graph Categories
	The Default Graph Category
	The Target Graph Category
	Changing the Target Graph Category in Place

	Morphisms of Graphs
	A Quick Start
	Predefined Types of Morphisms
	Main Procedures
	User-Defined Types of Morphisms

	Backtracking
	Simplest Examples: Using Opts and Done
	Full Examples: Using Chk and Extra
	Advanced Examples: When Opts and Done are functions
	Debugging Backtracking Algorithms.

	YAGS Functions by Topic
	Most Common Functions
	Drawing
	Constructing Graphs
	Families of Graphs
	Small Graphs
	Attributes and Parameters
	Unary Operators
	Binary Operators
	Cliques
	Morphisms of Graphs
	Graph Categories
	Digraphs
	Groups and Rings
	Backtracking
	Miscellaneous
	Deprecated

	YAGS Functions Reference
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Change Log
	Changes from version 0.0.4 to version 0.0.5
	Changes from version 0.0.3 to version 0.0.4
	Changes from version 0.0.2 to version 0.0.3

	References
	Index

