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Abstract

A (d, g)-cage is a d-regular graph of girth g with minimum order. We denote this order by n(d, g). Using group theoretic results
and exhaustive computational searches, we improved six lower bounds for the order of cages, namely n(3, 14) ≥ 262 (previous
lower bound 260), n(3, 15) ≥ 388 (prev. 384), n(3, 17) ≥ 770 (prev. 768), n(4, 9) ≥ 165 (prev. 163), n(5, 7) ≥ 110 (prev. 108) and
n(8, 5) ≥ 69 (prev. 68). We also reproduced many of the known lower bounds and cages, including the eighteen (3, 9)-cages, the
three (3, 10)-cages and the four (5, 5)-cages.
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1. Introduction

A (d, g)-graph is a (simple, finite) d-regular graph of girth g. A (d, g)-cage is a (d, g)-graph of minimum order. We
denote the order of a (d, g)-cage by n(d, g). Cages were introduced by Tutte in [22] and have been extensively studied
since then (see [9]). Cages with d = 2 (cycles), g = 3 (complete graphs) or g = 4 (complete bipartite graphs) are
generally considered to be trivial and hence, we usually study only cages with d ≥ 3 and g ≥ 5.

Finding cages or even determining the value of n(d, g) in general is a difficult problem: Besides 3 infinite families
of known cages (for g = 6, 8 and 12), only eleven other cases are settled, namely: (3, g) for g = 5, 7, 9, 10, 11; (d, 5)
for d = 3, 4, 5, 6, 7 (note that (3, 5) appears in both lists); (7, 6) and (4, 7)). For other cases, we only know bounds
on n(d, g). Any (d, g)-graph gives an upper bound on n(d, g) and record holders for these upper bounds are carefully
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accounted in the literature. In the case of lower bounds there are both, theoretical results [12, 21, 5, 1, 7, 3, 14, 2, 8]
and results based on exhaustive computational searches [17, 18, 19, 4, 15, 10].

A fundamental lower bound is the celebrated Moore bound (as reported by [12]): Every (d, g)-graph must contain
a Moore tree, which is a d-regular (save for leafs) tree of diameter g − 1 and maximum order. The order of such a tree
is the Moore bound, M(d, g), and its numerical value is:

M(d, g) =


1 + d ·

∑(g−3)/2
k=0 (d − 1)k =

d(d−1)(g−1)/2−2
d−2 when g is odd.

2 ·
∑(g−2)/2

k=0 (d − 1)k =
2(d−1)g/2−2

d−2 when g is even.

It follows that n(d, g) ≥ M(d, g). We further abbreviate M(d, g) simply as mb when d and g are clear from the
context. The number e(d, g) = n(d, g) − mb is called the excess and the graphs obtained by removing a Moore tree
from a cage are called excess graphs.

Computational techniques dealing with lower bounds involve exhaustive searches using backtracking. Backtrack-
ing is a standard programming technique, but approaches, implementation details and pruning rules are very important
for performance when dealing with difficult search problems such as finding cages. Our main contribution here is the
heavy use symmetries and group theoretic algorithms for conflict reduction and case reduction, but other techniques
also play a major part in performance including: Speculative exploration for conflict selection, dynamic programming,
lazy evaluation and reimplementation of some standard GAP procedures.

Our code was implemented in GAP [11] and YAGS [6]. We also used nauty [16] for computing the automorphism
groups of graphs, and the included programs geng and pickg for generation of possible excess graphs. We heavily
use the procedures Stabilizer(G,x) and RepresentativeAction(G,x,y) (see GAP’s manual), however, GAP’s
implementations do more than needed. For instance, Stabilizer(G,x) computes a complete stabilizer chain instead
of just one stabilizer. In the case of the other GAP procedure RepresentativeAction(G,x,y), which we call
Transporter(G,x,y), we reimplemented it, to use path compression in the orbit-stabilizer trees and lazy evaluation
for the products of permutations so that the products get done only when needed. Therefore, for performance reasons,
we needed to reimplement those procedures using the descriptions of the algorithms in [20] and [13]. We used dynamic
programming by storing all relevant results (orbit-stabilizer trees, stabilizers of groups, etc) to avoid recalculations.

2. Searching for cages

We searched for cages using backtracking. We use a stack of pending cases (feasible solutions, graphs) to keep
track of the computation. A feasible solution is a graph H with ∆(H) ≤ d, Girth(H) ≥ g and |H| = n. A conflict
is a vertex x ∈ H such that deg(x) < d and a solution for a conflict is a lists of graphs (new feasible solutions)
H1,H2, . . . ,Hs obtained from H by completing the neighborhood of x in H in all possible ways up to symmetries of
H. The initial contents of the stack is simply the disjoint union of a Moore tree, T, and a discrete graph, Ex, on n−mb
vertices. The contents of the main cycle of the algorithm may be expressed as follows.

1. Remove a graph H from the stack.
2. Compute the set of conflicts, conf up to symmetries of H.
3. Select a conflict, x ∈ conf.
4. Solve the conflict, x.
5. Put the new feasible solutions on the stack.

Our innovations here, are in the conflict selection and conflict solution procedures.
To solve a conflict we compute

(
S
k

)
G

: Given a set S , an integer k and a permutation group G acting on S , we denote

by
(

S
k

)
G

the set of all k-subsets of S up to symmetries in G (more details in the next section). Hence, if we want to
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compute all possible completions of the neighbors of x, we take:

k = d − deg(x),
G = Stabilizer(AutomorphismGroup(H),x),

S = {y ∈ V(H) : x , y, deg(y) < d, dist(x, y) > g − 1}.

In this way, for each Yi ∈
(

S
k

)
G

, we obtain a new graph Hi = H ∪ {xy : y ∈ Yi}. We mention here that our procedure for

computing
(

S
k

)
G

also uses backtracking and that it allows for a user-provided hook procedure, check(Y), for checking
additional properties that the user may require. check(Y) is called whenever a feasible solution Y ⊆ S is extended,
and the feasible solution is pruned when check(Y) returns false. In our case, the check(Y) is used to verify that no
short cycles are formed by the new candidate edges {xy : y ∈ Y}.

When selecting a conflict, we always select the conflict x with minimum number of graphs H1,H2, . . . ,Hs in its
solution. Instead of computing all possible completions for the neighborhoods of x for every conflict x at a given time,
we compute one completion for each conflict at a time and hence the first conflict that fails to have an additional
completion is certainly one with a minimum number of graphs in its solution.

3. Groups and Choosing

Given a set of integers X = {x1, x2, . . . , xs}, we say that it is in sorted presentation if xk < xk+1 for all k. The
maximum element of X is denoted by max X. We define X<z = {x ∈ X : x < z}. Given two sets in sorted presentation
X = {x1, x2 . . . , xs} and Y = {y1, y2 . . . , yt}, we say that Y is a prefix of X, denoted as Y 4 X, if Y ⊆ X and max Y < x
for all x ∈ X \ Y .

Let N be a positive integer, Ω = {1, 2, . . . ,N}, S ⊆ Ω and k ≤ |S |. We denote by
(

S
k

)
the set of all k-subsets of S ,

that is
(

S
k

)
= {X ⊆ S : |X| = k}. Now, let SΩ be the symmetric group on the elements of Ω, and let G be a subgroup,

G ≤ SΩ. Permutations g ∈ SΩ are bijective functions g : Ω → Ω, but we use exponential notation for the (right)
action of G on Ω, hence for x ∈ Ω and g ∈ G, we define xg = g(x).

Now assume S is G-invariant, that is, S G = {sg : g ∈ G} = S . Then G also acts on S and this induces an action
of G on

(
S
k

)
, namely, for g ∈ G and X ∈

(
S
k

)
, we define Xg = {xg : x ∈ X}. This in turns, defines an equivalence

relation on
(

S
k

)
, namely, X ∼ Y if and only if ∃ g ∈ G such that Y = Xg. The corresponding partition is then

(
S
k

)
/∼. We

denote by
(

S
k

)
G

the set resulting from selecting, from each equivalence class of,
(

S
k

)
/ ∼, the minimum element under

the lexicographic order.
Example: Let N = 7, S = {1, 4, 5, 7}, G = 〈 (1 4)(5 7), (1 4 5 7) 〉 (the dihedral group).

Then
(

S
2

)
G

= {{1, 4}, {1, 5}} and
(

S
3

)
G

= {{1, 4, 5}}.

The naive approach for computing
(

S
k

)
G

is to compute
(

S
k

)
first and then select a representative for each equivalence

class in
(

S
k

)
/∼. This approach is unfeasible in general since

(
S
k

)
may be huge even in cases when

(
S
k

)
G

is very small.

Instead, the general idea for computing
(

S
k

)
G

is simple: Use backtracking to compute
(

S
k

)
in lexicographic order and

pruning whenever the partial solution considered, X, has been previously considered up to symmetries in G. For this,
we need to define a precise strict partial order among subsets of Ω as follows:

Definition 3.1. Let X,Y ⊆ Ω, with X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym} in sorted presentation. We say that Y
precedes X, denoted as Y < X, if and only if ∃ s ≤ n,m with ys < xs and y j = x j for all j < s.

Note that Y 4 X implies Y ≮ X and X ≮ Y . Hence this strict partial order is similar, but not equal to the standard
lexicographic order, which is a strict total order. With this order defined, the pruning condition we need is simply:

PreviouslyConsidered(G,X){return (∃ g ∈ G with Xˆg < X);}

Again, a direct (naive) implementation of the previous code is also not feasible in general, since the group G may
be huge and hence, iterating g over the elements of G is not feasible. Instead, we implement that function much more
efficiently by using the following theorems.
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Theorem 3.2. Let X,Y ⊆ Ω and xn = max X. Then the following statements are equivalent:

1. Y < X.
2. ∃ z ∈ Y \ X, z < xn with X<z = Y<z.
3. ∃ z ∈ Y \ X, z < xn with X<z ⊆ Y.

Theorem 3.3. Let X ⊆ S , g ∈ G and xn = max X. Then, the following conditions are equivalent.

1. Xg < X
2. ∃ z ∈ Xg \ X, z < xn, with X<z ⊆ Xg.
3. ∃ z ∈ Xg \ X, with X<z ⊆ Xg.
4. ∃ z ∈ S <xn \ X, with X<z ∪ {z} ⊆ Xg.

Theorem 3.4. Y 4 X and Yg < Y ⇒ Xg < X.

Theorem 3.5. Let X ⊆ S , xn = max X and g ∈ G. Assume Xg < X. Let z be as in Theorem 3.3(4). Furthermore,
assume that for every proper prefix Y ≺ X we have that Yg ≮ Y. Then one of the following conditions hold:

1. xg
n = z.

2. xg
n ∈ X<z.

Many other important details will presented in the corresponding full article.

4. Experimental results

Our algorithm ran on a single processor, Intel Core i7 at 3.8 GHz always using a single core. We did run up to 8
processes at a time. The maximum time allotted per case was 2 months, but many processes were aborted after 2 days
when no significant progress was achieved in that time.

Table 1 shows our experimental results comprehensively. There, a check mark (3) indicates an improved lower
bound, a cross mark (7) indicates we were unable to reproduce a previously known lower bound. A red hyphen (-
) indicates that our algorithm took too long (and our patience ran out before the algorithm did) even to deal with
the Moore bound. We improved six lower bounds: n(3, 14) ≥ 262, n(3, 15) ≥ 388, n(3, 17) ≥ 770, n(4, 9) ≥ 165,
n(5, 7) ≥ 110 and n(8, 5) ≥ 69. The results that we could not reproduce are either theoretical results that are valid for an
infinite number of parameters or three previously known computational results (namely n(3, 11) = 112, n(3, 13) ≥ 202
and n(4, 7) = 67) where the authors reported years of cpu time (run in a few weeks on a mixture of machines) to obtain
the lower bound. We currently do not have access to such computing power.

In all cases, we started with the Moore bound (even if better bounds were known) and try higher and higher bounds
when feasible. For instance, our bound n(4, 9) ≥ 165 means that all values from 161 to 164 where tried and our
algorithm found no (4, 9)-cages of those orders, and hence the new lower bound is 165. Whenever our lower bound
matched an upper bound (and hence a cage of that order exists) for instance in n(3, 9) = 58, we where able to finish
the search for the case and find all the known cages for that parameters (all the eighteen (3, 9)-cages on 58 vertices
in this case). The cases that took up most time are presented in Table 2. All other cases that finished, had a combined
running time of 1.03 hours.

Acknowledgment: We are grateful to Geoffrey Exoo for several recommendations that improved our algorithms,
to David Flores for pointing out a mistake in a previous version of the paper and to Banff International Research
Station (BIRS) for its economical support to attend the excellent meeting in 2023 (23w5125: Extremal Graphs arising
from Designs and Configurations) that allowed us to have many fruitful exchanges with Geoffrey Exoo.
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d\g 5 6 7 8 9 10 11

3 10 10
10 10

14 14
14 14

24 24
24 22

30 30
30 30

58 58
58 46

70 70
70 62

1067 112
112 94

4 19 19
19 17

26 26
26 26

617 67
67 53

80 80
80 80

1653 275
163 161

- 384
245 242

- -
487 485

d\g 12 13 14 15 16 17

3 126 126
126 126

2007 272
202 190

2623 384
260 254

3883 620
384 382

5127 960
514 510

7703 2176
768 766

4 - 728
728 728

- -
1459 1457

- -
2189 2186

- -
4375 4373

- -
6563 6560

- -
13123 13121

d\g 5 6 7 8

5 30 30
30 26

42 42
42 42

1103 152
108 106

- 170
170 170

6 40 40
40 37

62 62
62 62

- 294
189 187

- 312
312 312

7 50 50
50 50

90 90
90 86

- -
304 302

- 672
518 518

8 693 80
68 65

114 114
114 114

- -
459 457

- 800
800 800

9 847 96
86 82

- 146
146 146

- 1152
660 658

- 1170
1170 1170

Table 1. Bounds for (d, g)-cages. In each cell, the lower right number is the Moore bound; lower left: best lower bound in literature; upper right:
best upper bound in the literature according to [9]; upper left: our best lower bound.

(d, g, n) time
(7, 6, 90) 1.99 months
(4, 7, 60) 1.01 months
(3, 9, 58) 15.8 days
(8, 5, 68) 14.9 days

(3, 13, 198) 8.30 days
(3, 14, 260) 4.60 days
(3, 11, 104) 4.48 days

(d, g, n) time
(4, 9, 164) 4.12 days
(3, 9, 56) 1.95 days

(5, 7, 108) 1.37 days
(3, 16, 510) 16.0 h
(3, 15, 386) 12.7 h

(4, 7, 59) 5.92 h
(3, 13, 196) 5.65 h

(d, g, n) time
(3, 11, 102) 2.99 h

(9, 5, 82) 1.60 h
(3, 17, 768) 33.8 min

(4, 7, 58) 24.7 min
(3, 14, 258) 21.6 min

(8, 5, 67) 19.2 min
(3, 9, 54) 13.2 min

Table 2. Running times for most time-consuming cases.
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