Goto Chapter: Top 1 2 3 4 5 6 A B C Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[1] Alc{\'o}n, L., Faria, L., de Figueiredo, C. M. H. and Gutierrez, M., The complexity of clique graph recognition, Theoret. Comput. Sci., 410 (2009), 2072 -- 2083.

[2] Bollob{\'a}s, B., Random graphs, Cambridge University Press, Second edition, Cambridge Studies in Advanced Mathematics, 73, Cambridge (2001), xviii+498 pages.

[3] Bornstein, C. F. and Szwarcfiter, J. L., On clique convergent graphs, Graphs Combin., 11 (3) (1995), 213--220.

[4] Bron, C. and Kerbosch, J., Finding all cliques of an undirected graph--Algorithm 457, Communications of the ACM, 16 (1973), 575--577.

[5] Dragan, F. F., Centers of graphs and the Helly property (in Russian), Ph.D. thesis, Moldava State University, Chisin\v{a}u, Moldava (1989).

[6] Escalante, F., \"Uber iterierte Clique-Graphen, Abh. Math. Sem. Univ. Hamburg, 39 (1973), 59--68.

[7] Fr{\'\i}as{-}Armenta, M. E., Larri{\'o}n, F., Neumann{-}Lara, V. and Piza{\~n}a, M. A., Edge contraction and edge removal on iterated clique graphs , Discrete Applied Mathematics , 161 (10–11) (2013), 1427 - 1439
().

[8] Fr{\'\i}as{-}Armenta, M. E., Neumann{-}Lara, V. and Piza{\~n}a, M. A., Dismantlings and Iterated Clique Graphs, Discrete Math., 282 (1-3) (2004), 263--265.

[9] Hagauer, J. and Klavzar, S., Clique-gated graphs, Discrete Mathematics, 161 (1-3) (1996), 143--149.

[10] Harary, F., Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London (1969), ix+274 pages.

[11] Kahle, M., Topology of random clique complexes , Discrete Mathematics , 309 (6) (2009), 1658 - 1671
().

[12] Larri{\'o}n, F. and Neumann{-}Lara, {., Clique divergent graphs with unbounded sequence of diameters, Discrete Math., 197/198 (1999), 491--501.

[13] Larri{\'o}n, F. and Neumann{-}Lara, {., On clique-divergent Graphs with Linear Growth, Discrete Math., 245 (2002), 139--153.

[14] Larri{\'o}n, F., Neumann{-}Lara, {. and Piza{\~n}a, M. A., Whitney Triangulations, Local Girth and Iterated Clique Graphs, Discrete Math., 258 (1-3) (2002), 123--135.

[15] Larri{\'o}n, F., Neumann{-}Lara, {. and Piza{\~n}a, M. A., Clique Divergent Clockwork Graphs and Partial Orders, Discrete Appl. Math., 141 (1-3) (2004), 195--207.

[16] Larri{\'o}n, F. and Neumann{-}Lara, V., A family of clique divergent graphs with linear growth, Graphs Combin., 13 (3) (1997), 263--266.

[17] Larri{\'o}n, F., Neumann{-}Lara, V. and Piza{\~n}a, M. A., Graph relations, clique divergence and surface triangulations, J. Graph Theory, 51 (2) (2006), 110--122.

[18] Larri{\'o}n, F., Neumann{-}Lara, V. and Piza{\~n}a, M. A., On expansive graphs, European J. Combin., 30 (2) (2009), 372--379.

[19] Larri{\'o}n, F., Piza{\~n}a, M. A. and Villarroel-Flores, R., Random Graphs, Retractions and Clique Graphs, Electronic Notes on Discrete Mathematics, 30 (2008), 285-290.

[20] Larri{\'o}n, F., Piza{\~n}a, M. A. and Villarroel-Flores, R., The clique behavior of circulants with three small jumps, Ars Combinatoria, 113A (2014), 147--160.

[21] Moon, J. W. and Moser, L., On cliques in graphs, Israel J. Math., 3 (1965), 23--28.

[22] Neumann{-}Lara, V., On Clique-divergent Graphs, in Probl\`emes combinatoires et th\'eorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), CNRS, Colloq. Internat. CNRS, 260, Paris (1978), 313--315.

[23] Piza{\~n}a, M. A., Distances and Diameters on Iterated Clique Graphs, Discrete Appl. Math., 141 (1-3) (2004), 255--161.

[24] Prisner, E., Graph dynamics, Longman, Harlow (1995), xii+233 pages.

[25] Requardt, M., (Quantum) spacetime as a statistical geometry of lumps in random networks, Classical Quantum Gravity, 17 (10) (2000), 2029--2057.

[26] Requardt, M., Space-time as an order-parameter manifold in random networks and the emergence of physical points, in Quantum theory and symmetries (Goslar, 1999), World Sci. Publ., River Edge, NJ (2000), 555--561.

[27] Requardt, M., A geometric renormalization group in discrete quantum space-time, J. Math. Phys., 44 (12) (2003), 5588--5615.

[28] Szwarcfiter, J. L., Recognizing clique-Helly graphs, Ars Combin., 45 (1997), 29--32.

[29] Szwarcfiter, J. L. (Reed, B. A. and Linhares-Sales, C., Eds.), A survey on clique graphs, in Recent advances in algorithms and combinatorics, Springer, CMS Books Math./Ouvrages Math. SMC, 11, New York (2003), 109--136.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 A B C Bib Ind

generated by GAPDoc2HTML